Elettromagnetismo

Prof. Francesco Ragusa Università degli Studi di Milano

Lezione n. 35 - 11.05.2023

Equazione delle Onde Elettromagnetiche e sue soluzioni Onde piane - Onde monocromatiche Polarizzazione delle onde

Anno Accademico 2022/2023

Equazione dell'onda

- ullet Scriviamo adesso l'equazione di propagazione dei campi ${f E}$ e ${f B}$ dopo che l'onda è stata generata
 - ullet Utilizziamo le equazioni di Maxwell nel vuoto con ho=0 e ${
 m J}=0$

Itilizziamo le equazioni di Maxwell nel vuoto con
$$\rho=0$$
 e $\mathbf{J}=\mathbf{0}$
$$\boldsymbol{\nabla}\cdot\mathbf{E}=0\qquad \boldsymbol{\nabla}\cdot\mathbf{B}=0\qquad \boldsymbol{\nabla}\times\mathbf{E}=-\frac{\partial\mathbf{B}}{\partial t}\qquad \boldsymbol{\nabla}\times\mathbf{B}=\frac{1}{c^2}\frac{\partial\mathbf{E}}{\partial t}$$
 Si tratta di un sistema di equazioni differenziali accoppiate
$$\boldsymbol{\varepsilon}_0\boldsymbol{\mu}_0$$

- Si tratta di un sistema di equazioni differenziali accoppiate
- ullet Per disaccoppiare i campi ${f E}$ e ${f B}$ calcoliamo il rotore delle ultime due equazioni
 - ullet Utilizziamo l'identità (diapositiva 82) $oldsymbol{
 abla} imes(oldsymbol{
 abla} imesV)=oldsymbol{
 abla}(oldsymbol{
 abla}\cdot oldsymbol{V})-oldsymbol{
 abla}^2oldsymbol{V}$
- Applichiamola alla terza equazione

$$oldsymbol{
abla} oldsymbol{
abla} oldsymbol$$

• Utilizziamo la quarta equazione

$$-\nabla^2 \mathbf{E} = -\frac{\partial \nabla \times \mathbf{B}}{\partial t} \qquad \qquad \nabla^2 \mathbf{E} = \frac{1}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2}$$

• È una forma compatta per indicare le tre equazioni

$$oldsymbol{
abla}^2 E_x = rac{1}{c^2} rac{\partial^2 E_x}{\partial t^2}$$
 $oldsymbol{
abla}^2 E_y = rac{1}{c^2} rac{\partial^2 E_y}{\partial t^2}$ $oldsymbol{
abla}^2 E_z = rac{1}{c^2} rac{\partial^2 E_z}{\partial t^2}$

Equazione dell'onda

ullet Si può dimostrare che anche le componenti $B_x,\,B_y,\,B_z$ del campo magnetico soddisfano la stessa equazione del campo ${f E}$

$$\mathbf{\nabla}^2 \mathbf{B} = \frac{1}{c^2} \frac{\partial^2 \mathbf{B}}{\partial t^2}$$

- ullet Inoltre verificheremo in seguito che anche il potenziale vettore A e il potenziale scalare ϕ soddisfano la stessa equazione dell'onda
- Da un punto di vista matematico si tratta di una equazione differenziale alle derivate parziali di tipo iperbolico

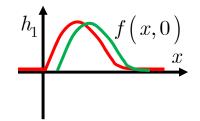
$$\nabla^2 f - \frac{1}{c^2} \frac{\partial^2 f}{\partial t^2} = 0$$

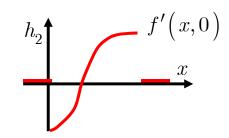
• Per risolverla occorre definire le condizioni iniziali

$$f\left(\mathbf{r},0
ight)=h_{1}\left(\mathbf{r}
ight) \qquad \qquad \left. rac{\partial f\left(\mathbf{r},t
ight)}{\partial t}
ight|_{t=0}=h_{2}\left(\mathbf{r}
ight)$$

Ad esempio nel caso unidimensionale

$$\frac{\partial^2 f}{\partial x^2} - \frac{1}{c^2} \frac{\partial^2 f}{\partial t^2} = 0$$





• Le equazioni trovate sono una generalizzazione a tre dimensioni dell'equazione dell'onda in una dimensione

$$\frac{\partial^2 f(x,t)}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 f(x,t)}{\partial t^2}$$

$$\mathbf{\nabla}^2 f(\mathbf{r},t) = \frac{1}{c^2} \frac{\partial^2 f(\mathbf{r},t)}{\partial t^2}$$

Com'è noto nel caso unidimensionale la soluzione generale è

$$f(x,t)=u(x-ct)+v(x+ct)$$
 $oldsymbol{u}, oldsymbol{v}$ sono funzioni continue con derivata continua

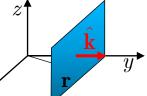
- ullet Naturalmente la funzione $E_y = -\mu_0 c K R_T (x\!-\!ct)$ soddisfa il nostro problema della corrente superficiale infinita
- ullet Per correnti parallele ai piani x-y e x-z le soluzioni avrebbero potuto essere

$$\dot{E}_x = -\mu_0 c K R_T (z - ct)$$

$$E_x = -\mu_0 c K R_T (z-ct) \qquad \quad E_z = -\mu_0 c K R_T (y-ct) \label{eq:expectation}$$

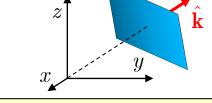
- La caratteristica saliente di queste soluzioni è che il campo è costante sui piani perpendicolari alla direzione di propagazione
 - Ad esempio

$$y - ct = \hat{\mathbf{e}}_y \cdot \mathbf{r} - ct$$



 Nel caso in cui la direzione di propagazione sia arbitraria

$$\hat{\mathbf{e}}_i \to \hat{\mathbf{k}} \quad \hat{\mathbf{e}}_i \cdot \mathbf{r} - ct \to \hat{\mathbf{k}} \cdot \mathbf{r} - ct$$



E è costante in ogni punto del piano

NB: non tutte le soluzioni sono onde piane

**

• Cerchiamo le soluzioni dell'equazione dell'onda unidimensionale utilizzando la trasformata di Fourier $\frac{\partial^2 f\left(x,t\right)}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 f\left(x,t\right)}{\partial t^2}$

$$\frac{\partial^2 f(x,t)}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 f(x,t)}{\partial t^2}$$

La trasformata di Fourier è definita come

$$F(k) = \int_{-\infty}^{+\infty} f(x)e^{-ikx}dx$$

$$F(k) = \int_{-\infty}^{+\infty} f(x)e^{-ikx}dx$$
 $f(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(k)e^{+ikx}dk$

ullet Applicando le formule precedenti alla funzione di due variabili f(x,t)

$$F(k,t) = \int_{-\infty}^{+\infty} f(x,t)e^{-ikx}dx$$

$$f(x,t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(k,t)e^{+ikx}dk$$

• Calcoliamo le derivate di f(x,t)

$$\frac{\partial^2}{\partial x^2} f(x,t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} -k^2 F(k,t) e^{+ikx} dk$$

$$\frac{\partial^2}{\partial x^2} f(x,t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} -k^2 F(k,t) e^{+ikx} dk \qquad \frac{1}{c^2} \frac{\partial^2}{\partial t^2} f(x,t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \frac{1}{c^2} \frac{\partial^2 F(k,t)}{\partial t^2} e^{+ikx} dk$$

• Introduciamo nell'equazione

$$\frac{\partial^2 f\left(x,t\right)}{\partial x^2} - \frac{1}{c^2} \frac{\partial^2 f\left(x,t\right)}{\partial t^2} = 0 \longrightarrow -\frac{1}{2\pi} \int_{-\infty}^{+\infty} \left(k^2 F(k,t) + \frac{1}{c^2} \frac{\partial^2 F(k,t)}{\partial t^2}\right) e^{+ikx} dk = 0$$

• L'integrando deve essere identicamente nullo

$$\frac{1}{c^2} \frac{\partial^2 F(k,t)}{\partial t^2} + k^2 F(k,t) = 0$$

**

 Abbiamo pertanto ricondotto il problema alla ricerca della soluzione di un'equazione differenziale ordinaria (oscillatore armonico)

$$\frac{d^2F(k,t)}{dt^2} = -\omega^2F(k,t) \qquad \omega^2 = k^2c^2$$

ullet Per ogni valore di k la soluzione è

$$F(k,t) = U(k)e^{-i\omega t} + V(k)e^{+i\omega t}$$

- ullet Rimandiamo la discussione delle "costanti" U(k) e V(k) che dipendono dalle condizioni iniziali
- Inserendo nell'espressione per f(x,t)

$$f(x,t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \left[U(k)e^{-i\omega t} + V(k)e^{+i\omega t} \right] e^{+ikx} dk$$

$$f(x,t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \left[U(k)e^{-i\omega t + ikx} + V(k)e^{+i\omega t + ikx} \right] dk$$

$$f(x,t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \left[U(k)e^{-i\mathbf{k}ct + ikx} + V(k)e^{+i\mathbf{k}ct + ikx} \right] dk$$

$$f(x,t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \left[U(k)e^{+ik(x-ct)} + V(k)e^{+ik(x+ct)} \right] dk$$

• Esaminiamo la soluzione trovata

$$f(x,t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \underbrace{U(k)e^{+ik(x+ct)} + V(k)e^{+ik(x-ct)}}_{-\infty} dk$$
$$f(x,t) = u(x+ct) + v(x-ct)$$

- Abbiamo ritrovato la soluzione di D'Alembert
- La soluzione generale dell'equazione è la somma di due onde
 - ullet Un'onda che propaga nel senso negativo delle x
 - ullet Un'onda che propaga nel senso positivo delle x
- È facile verificare che per una arbitraria funzione h(x), due volte continua $h(x\pm ct)$ è soluzione dell'equazione delle onde
- ullet Inoltre osserviamo che le funzioni $\exp[\pm ik(x\pm ct)]$ sono soluzioni dell'equazione delle onde
 - Sono funzioni trigonometriche (seni e coseni)
 - ullet I parametri ω e k non sono indipendenti $\omega=kc$
 - Le funzioni $\exp[\pm ik(x\pm ct)]$ dette anche onde monocromatiche di frequenza $\omega=kc$
- La soluzione generale, espressa sotto forma di trasformata, è una sovrapposizione (integrale) di onde monocromatiche con frequenze diverse

ullet Per finire determiniamo U(k) e V(k) in funzione delle condizioni iniziali

$$f(x,0) = h_1(x) H_1(k) = \int_{-\infty}^{+\infty} h_1(x)e^{-ikx}dx h_1(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} H_1(k)e^{+ikx}dk$$

$$\frac{\partial f(x,t)}{\partial t} \bigg|_{t=0} = h_2(x) H_2(k) = \int_{-\infty}^{+\infty} h_2(x)e^{-ikx}dx h_2(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} H_2(k)e^{+ikx}dk$$

Abbiamo

$$f(x,t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \left[U(k)e^{+ik(x+ct)} + V(k)e^{+ik(x-ct)} \right] dk$$

$$f(x,0) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \left[U(k) + V(k) \right] e^{+ikx} dk$$

$$H_1(k) = U(k) + V(k)$$

• Inoltre

$$\dot{f}(x,t) = \frac{\partial}{\partial t} f(x,t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} ikc \left[U(k)e^{+ik(x+ct)} - V(k)e^{+ik(x-ct)} \right] dk$$

$$\dot{f}(x,0) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} ikc \left[U(k) - V(k) \right] e^{+ikx} dk \qquad \qquad H_2(k) = ikc \left[U(k) - V(k) \right]$$

Otteniamo

$$U(k) = \frac{1}{2} \left[H_1(k) + \frac{H_2(k)}{ikc} \right]$$

$$\boxed{U(k) = \frac{1}{2} \bigg[H_{\scriptscriptstyle 1}(k) + \frac{H_{\scriptscriptstyle 2}(k)}{ikc} \bigg]} \qquad \boxed{V(k) = \frac{1}{2} \bigg[H_{\scriptscriptstyle 1}(k) - \frac{H_{\scriptscriptstyle 2}(k)}{ikc} \bigg]}$$

Onde piane e monocromatiche

- Ritorniamo alle onde elettromagnetiche
 - Abbiamo visto che i campi E e B soddisfano le equazioni

$$\nabla^2 \mathbf{E} = \frac{1}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2} \qquad \nabla^2 \mathbf{B} = \frac{1}{c^2} \frac{\partial^2 \mathbf{B}}{\partial t^2} \qquad \frac{1}{\varepsilon_0 \mu_0} = c^2$$

- In coordinate cartesiane le 6 componenti dei campi soddisfano le equazioni dell'onda
- \bullet Una soluzione dell'equazione dell'onda non soddisfa necessariamente le equazioni di Maxwell (che accoppiano E e B)
 - Le equazioni d'onda per E e per B sono disaccoppiate
- La richiesta che le soluzioni soddisfino anche le equazioni di Maxwell restringe le soluzioni accettabili: onde elettromagnetiche
 - \bullet Le equazioni $\nabla{\cdot}E=0$ e $\nabla{\cdot}B=0$ impongono che E e B siano perpendicolari alla direzione di propagazione
 - Le equazioni del rotore impongono che i campi ${\bf E}$ e ${\bf B}$ siano perpendicolari fra loro e i loro moduli collegati
- ullet Consideriamo soluzioni del tipo $f E(r,t)=f E_0~e^{-i(\omega t~-kx)}$
 - ullet Un'onda che propaga lungo l'asse x
 - I campi $\mathbf{E}(\mathbf{r},t)$ e $\mathbf{B}(\mathbf{r},t)$ hanno lo stesso valore sui piani perpendicolari all'asse x
 - Un'onda di questo tipo si chiama onda piana

- ullet In un'onda piana i campi E e B non cambiano spostandosi sul piano
 - Non necessariamente il piano deve essere perpendicolare ad uno degli assi delle coordinate I campi dipendono solo dalla lunghezza ζ della proiezione di r nella direzione della normale al piano \hat{k}

$$egin{align} \zeta &= \mathbf{r} \cdot \hat{\mathbf{k}} = \hat{k}_x x + \hat{k}_y y + \hat{k}_z z \ \mathbf{E}ig(\mathbf{r},tig) &= \mathbf{E}ig(\zeta,tig) & \mathbf{B}ig(\mathbf{r},tig) = \mathbf{B}ig(\zeta,tig) \end{aligned}$$

ullet Il fatto che il campo dipenda solo da ζ implica che le derivate assumano una forma particolare

$$\frac{\partial \mathbf{E}(\mathbf{r},t)}{\partial x} = \frac{\partial \mathbf{E}(\zeta,t)}{\partial x} = \frac{\partial \mathbf{E}(\zeta,t)}{\partial \zeta} \frac{\partial \zeta}{\partial x} = \hat{k}_x \frac{\partial \mathbf{E}(\zeta,t)}{\partial \zeta}$$

 ζ è la distanza del piano dall'origine

- Espressioni analoghe per le altre derivate
- Specializziamo queste considerazioni all'operatore ∇ applicato a un'onda piana (in coordinate cartesiane) o a una sua componente $f(\zeta)$

$$\nabla = \hat{\mathbf{e}}_x \frac{\partial}{\partial x} + \hat{\mathbf{e}}_y \frac{\partial}{\partial y} + \hat{\mathbf{e}}_z \frac{\partial}{\partial z} = \hat{k}_x \hat{\mathbf{e}}_x \frac{\partial}{\partial \zeta} + \hat{k}_y \hat{\mathbf{e}}_y \frac{\partial}{\partial \zeta} + \hat{k}_z \hat{\mathbf{e}}_z \frac{\partial}{\partial \zeta} \qquad \nabla = \hat{\mathbf{k}} \frac{\partial}{\partial \zeta}$$

ullet Utilizzando l'espressione dell'operatore abla trovata per l'onda piana possiamo riscrivere le equazioni di Maxwell nel vuoto

$$\mathbf{\nabla} = \hat{\mathbf{k}} \frac{\partial}{\partial \zeta}$$

$$\nabla \cdot \mathbf{E} = 0$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \cdot \mathbf{E} = 0$$
 $\nabla \cdot \mathbf{B} = 0$ $\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$ $\nabla \times \mathbf{B} = \frac{1}{c^2} \frac{\partial \mathbf{E}}{\partial t}$

$$\nabla \times \mathbf{B} = \frac{1}{c^2} \frac{\partial \mathbf{E}}{\partial t}$$

$$\hat{\mathbf{k}} \cdot \frac{\partial \mathbf{E}}{\partial \zeta} = 0$$

$$\hat{\mathbf{k}} \cdot \frac{\partial \mathbf{B}}{\partial \zeta} = 0$$

$$\hat{\mathbf{k}} \times \frac{\partial \mathbf{E}}{\partial \zeta} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\hat{\mathbf{k}} \cdot \frac{\partial \mathbf{E}}{\partial \zeta} = 0 \qquad \hat{\mathbf{k}} \cdot \frac{\partial \mathbf{B}}{\partial \zeta} = 0 \qquad \hat{\mathbf{k}} \times \frac{\partial \mathbf{E}}{\partial \zeta} = -\frac{\partial \mathbf{B}}{\partial t} \qquad \hat{\mathbf{k}} \times \frac{\partial \mathbf{B}}{\partial \zeta} = \frac{1}{c^2} \frac{\partial \mathbf{E}}{\partial t}$$

- Ricaviamo la proprietà di trasversalità dell'onda piana
 - Moltiplichiamo per k la quarta equazione

$$\hat{\mathbf{k}} \cdot \left(\hat{\mathbf{k}} \times \frac{\partial \mathbf{B}}{\partial \zeta} \right) = \frac{1}{c^2} \hat{\mathbf{k}} \cdot \frac{\partial \mathbf{E}}{\partial t} \quad \longrightarrow \quad \hat{\mathbf{k}} \cdot \frac{\partial \mathbf{E}}{\partial t} = 0 \quad \longrightarrow \quad \hat{\mathbf{k}} \cdot \frac{\partial \mathbf{E}}{\partial t} dt = 0$$

- Analogamente per la prima equazione si ha

$$\hat{\mathbf{k}} \cdot \frac{\partial \mathbf{E}}{\partial \zeta} d\zeta = 0$$

• Sommando le due equazioni

$$\hat{\mathbf{k}} \cdot \left(\frac{\partial \mathbf{E}}{\partial t} dt + \frac{\partial \mathbf{E}}{\partial \zeta} d\zeta \right) = 0 \qquad \text{definiamo} \qquad d\mathbf{E} = \frac{\partial \mathbf{E}}{\partial t} dt + \frac{\partial \mathbf{E}}{\partial \zeta} d\zeta$$

ullet Il differenziale $d{f E}$ è la variazione del campo elettrico se ci si muove nella direzione di propagazione o se varia il tempo L'onda è trasversale alla direzione di propagazione

$$\hat{\mathbf{k}} \cdot d\mathbf{E} = 0$$

ullet Analogamente dalla seconda e dalla terza equazione si ricava ullet y

 $\hat{f k} \cdot d{f B} = 0$ ricordiamo la precedente $\hat{f k} \cdot d{f E} = 0$

- Il significato di queste equazioni è il seguente
 - \bullet In un'onda piana le variazioni $dE\ e\ dB$ dovute a spostamenti lungo ζ e/o a variazioni nel tempo sono perpendicolari a k

ullet Ad esempio, il campo ${f E}$ potrebbe avere una componente uniforme lungo ζ

$$\frac{\partial E_{\zeta}}{\partial \zeta} = 0 \quad \Longrightarrow \quad \hat{\mathbf{k}} \cdot \frac{\partial \mathbf{E}}{\partial \zeta} = 0 \quad \text{inoltre} \quad dE_{\zeta} = \frac{\partial E_{\zeta}}{\partial t} dt + \frac{\partial E_{\zeta}}{\partial \zeta} d\zeta = 0$$

- \bullet Implica che anche $\ \, \frac{\partial E_{\zeta}}{\partial t} = 0 \,$ Significa che sarebbero campi statici
- Non sono onde che propagano
- ullet Quindi i campi E e B di un'onda piana giacciono sul piano perpendicolare a k
 - ullet Utilizziamo un sistema di riferimento locale $\xi-\eta$
 - ullet I campi possono essere scomposti nelle componenti E_{ξ} e E_{η} , B_{ξ} e B_{η}
 - Verifichiamo adesso che queste componenti soddisfano l'equazione dell'onda

• Ricaviamo l'equazione dell'onda nella coordinata 🤇

$$\hat{\mathbf{k}} \cdot \frac{\partial \mathbf{E}}{\partial \zeta} = 0 \qquad \hat{\mathbf{k}} \cdot \frac{\partial \mathbf{B}}{\partial \zeta} = 0 \qquad \hat{\mathbf{k}} \times \frac{\partial \mathbf{E}}{\partial \zeta} = -\frac{\partial \mathbf{B}}{\partial t} \qquad \hat{\mathbf{k}} \times \frac{\partial \mathbf{B}}{\partial \zeta} = \frac{1}{c^2} \frac{\partial \mathbf{E}}{\partial t}$$

- Utilizziamo la terza e la guarta equazione
 - ullet Moltiplichiamo vettorialmente la terza per ${f k}$

$$\hat{\mathbf{k}} \times \left(\hat{\mathbf{k}} \times \frac{\partial \mathbf{E}}{\partial \zeta}\right) = -\hat{\mathbf{k}} \times \frac{\partial \mathbf{B}}{\partial t}$$

$$\hat{\mathbf{k}} \times \left(\hat{\mathbf{k}} \times \frac{\partial \mathbf{E}}{\partial \zeta}\right) = \hat{\mathbf{k}} \left(\hat{\mathbf{k}} \times \frac{\partial \mathbf{E}}{\partial \zeta}\right) - \left(\hat{\mathbf{k}} \cdot \hat{\mathbf{k}}\right) \frac{\partial \mathbf{E}}{\partial \zeta} = -\frac{\partial \mathbf{E}}{\partial \zeta} = -\hat{\mathbf{k}} \times \frac{\partial \mathbf{B}}{\partial t}$$

ullet Deriviamo rispetto a ζ l'equazione ottenuta e rispetto a t la quarta

$$rac{\partial^2 \mathbf{E}}{\partial \zeta^2} = \hat{\mathbf{k}} imes rac{\partial^2 \mathbf{B}}{\partial t \partial \zeta}$$

$$\hat{\mathbf{k}} \times \frac{\partial^2 \mathbf{B}}{\partial t \partial \zeta} = \frac{1}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2}$$

Eliminiamo B

$$\frac{\partial^2 \mathbf{E}}{\partial \zeta^2} = \frac{1}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2}$$

 $rac{\partial^2 \mathbf{E}}{\partial \zeta^2} = rac{1}{c^2} rac{\partial^2 \mathbf{E}}{\partial t^2}$ Ci siamo ricondotti all'equazione dell'onda unidimensionale

• Analogamente per il campo B

- Le equazioni trovate sono quelle dell'onda unidimensionale
 - Utilizziamo le soluzioni trovate precedentemente (vedi diapositiva 383)

$$f(\zeta,t) = e^{\pm i(k\zeta \pm \omega t)} = e^{\pm i(\omega t \pm k\zeta)}$$

- Pertanto ci sono due soluzioni che descrivono
 - ullet Un'onda che viaggia verso "destra": $\omega t k \zeta$
 - ullet Un'onda che viaggia verso "sinistra": $\omega t + k \zeta$
- ullet Per ciascuno dei due tipi di onda esistono ancora due soluzioni $e^{\pm i(...)}$
 - La soluzione generale sarà data da

$$A\,e^{+i\phi}\,+\,Be^{-i\phi}$$
 ϕ può essere $\omega t - k\zeta$ oppure $\omega t + k\zeta$

- Le costanti A e B sono scelte in modo che la soluzione sia reale: $B=A^*$
 - ullet Definiamo ho = |A| = |B| e $\delta = rg(A) = -rg(B)$

$$Ae^{+i\phi} + Be^{-i\phi} = \rho e^{+i\delta} e^{+i\phi} + \rho e^{-i\delta} e^{-i\phi} = \rho \left[e^{+i(\phi+\delta)} + e^{-i(\phi+\delta)} \right]$$
$$= 2\rho \cos(\phi + \delta)$$

- ullet Sia la fase δ che l'ampiezza ho sono arbitrarie (ho o 2
 ho è la stessa cosa)
- ullet Una differenza di $\pi/2$ in δ fa passare da un seno a un coseno
- Le soluzioni sono pertanto onde sinusoidali che viaggiano in due direzioni

$$ho\sin\left(\omega t\pm k\zeta+\delta
ight)$$
 $ho\cos\left(\omega t\pm k\zeta+\delta
ight)$ sono anche monocromatiche

- Abbiamo visto che le soluzioni sono onde sinusoidali
 - Tuttavia è molto più semplice utilizzare gli esponenziali complessi
 - ullet Per tale motivo si indica la soluzione nella forma $A\,e^{i(\omega t \pm k\zeta)}$
 - ullet La costante A è in generale complessa: contiene eventuali sfasamenti δ
 - Alla fine del calcolo (lineare) si prende la parte reale
- Usiamo il vettore d'onda ${\bf k}=k{\bf \hat k}$ $k\zeta={\bf k}\cdot{\bf r}=k_xx+k_yy+k_zz$ Consideriamo un'onda generale $Ae^{i(\omega t-{\bf k}\cdot{\bf r})}+Be^{i(\omega t+{\bf k}\cdot{\bf r})}$
- Ritornando alla soluzione per il campo elettrico troviamo

$$E_{\xi}\left(\mathbf{r},t\right) = E_{1\xi}e^{i\omega t - i\mathbf{k}\cdot\mathbf{r}} + E_{2\xi}e^{i\omega t + i\mathbf{k}\cdot\mathbf{r}}$$

- ullet Le costanti $E_{1\xi}$ e $E_{2\xi}$ sono, in generale, complesse
 - ullet Per la componente E_η del campo si trova una soluzione analoga

• Per la componente
$$E_\eta$$
 del campo si trova una soluzione
$$E_\eta\left({\bf r},t\right)=E_{1\eta}e^{i\omega t-i{\bf k}\cdot{\bf r}}+E_{2\eta}e^{i\omega t+i{\bf k}\cdot{\bf r}}$$
• In forma vettoriale

$$\mathbf{E}(\mathbf{r},t) = \tilde{\mathbf{E}}_1 e^{i\omega t - i\mathbf{k}\cdot\mathbf{r}} + \tilde{\mathbf{E}}_2 e^{i\omega t + i\mathbf{k}\cdot\mathbf{r}}$$

- ullet Il simbolo \sim (tilde) utilizzato per i vettori sottolinea che, in generale, si tratta di grandezze complesse
 - I vettori complessi sono necessari per permettere una fase arbitraria

Per il campo magnetico si trova una soluzione analoga

$$\mathbf{B}(\mathbf{r},t) = \tilde{\mathbf{B}}_1 e^{i\omega t - i\mathbf{k}\cdot\mathbf{r}} + \tilde{\mathbf{B}}_2 e^{i\omega t + i\mathbf{k}\cdot\mathbf{r}}$$

- ullet Troviamo una relazione fra i vettori $ilde{\mathbf{E}}_{_1}$ e $ilde{\mathbf{E}}_{_2}$ e i vettori $ilde{\mathbf{B}}_{_1}$ e $ilde{\mathbf{B}}_{_2}$
- Utilizziamo l'equazione (vedi diapositiva 387)

$$\hat{\mathbf{k}}\times\frac{\partial\mathbf{E}}{\partial\zeta}=-\frac{\partial\mathbf{B}}{\partial t} \ \text{ ricordiamo il campo } \mathbf{E} \qquad \mathbf{E}\big(\mathbf{r},t\big)=\tilde{\mathbf{E}}_1e^{i\omega t-ik\zeta}+\tilde{\mathbf{E}}_2e^{i\omega t+ik\zeta}$$

• Calcoliamo le derivate

$$\frac{\partial \mathbf{E}}{\partial \zeta} = -ik\tilde{\mathbf{E}}_1 e^{i\omega t - ik\zeta} + ik\tilde{\mathbf{E}}_2 e^{i\omega t + ik\zeta} \qquad \frac{\partial \mathbf{B}}{\partial t} = i\omega \left(\tilde{\mathbf{B}}_1 e^{i\omega t - ik\zeta} + \tilde{\mathbf{B}}_2 e^{i\omega t + ik\zeta}\right)$$

• Introduciamo nell'equazione di Maxwell

$$-ik\,\hat{\mathbf{k}}\times\left(\,\tilde{\mathbf{E}}_{1}e^{i\omega t-ik\zeta}\,-\,\tilde{\mathbf{E}}_{2}e^{i\omega t+ik\zeta}\,\right)\quad=-i\omega\left(\,\tilde{\mathbf{B}}_{1}e^{i\omega t-ik\zeta}\,+\,\tilde{\mathbf{B}}_{2}e^{i\omega t+ik\zeta}\,\right)$$

ullet Uguagliamo i coefficienti dei due esponenziali (ricordiamo $\omega=kc)$

- ullet Consideriamo un'onda che viaggia nella direzione positiva $oldsymbol{z} \ \mathbf{k} = k \, \hat{\mathbf{e}}_z$
 - ullet Supponiamo il vettore $ilde{\mathbf{E}}_{\!\scriptscriptstyle 1}$ nella direzione $oldsymbol{x}$ $ilde{\mathbf{E}}_{\!\scriptscriptstyle 1}$ = $E\,\hat{\mathbf{e}}_{\!\scriptscriptstyle x}$
 - ullet Il vettore $ilde{\mathrm{B}}_{\scriptscriptstyle 1}$ punta nella direzione y

$$\tilde{\mathbf{B}}_{1} = \frac{1}{c}\hat{\mathbf{k}} \times \tilde{\mathbf{E}}_{1} = \frac{E}{c}\hat{\mathbf{e}}_{z} \times \hat{\mathbf{e}}_{x} = \frac{E}{c}\hat{\mathbf{e}}_{y}$$

 $egin{align} \mathbf{E}ig(\mathbf{r},tig) &= ilde{\mathbf{E}}_1 e^{i\omega t - ikz} \ \mathbf{B}ig(\mathbf{r},tig) &= ilde{\mathbf{B}}_1 e^{i\omega t - ikz} \ \end{aligned}$

• Il periodo dell'onda

$$T = \frac{2\pi}{\omega}$$

• La lunghezza d'onda

$$\lambda = cT = \frac{\omega}{k}T = \frac{\omega}{k}\frac{2\pi}{\omega}$$

$$\lambda = \frac{2\pi}{k}$$

$$k = \frac{2\pi}{\lambda}$$

$$\omega t = \frac{\pi}{2}$$

Lo spettro delle onde elettromagnetiche

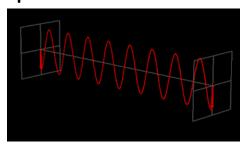
	The Electromagnetic Spectrum	
Frequency (Hz)	Type	Wavelength (m)
10 ²²		10^{-13}
10^{21}	gamma rays	10^{-12}
10^{20}		10^{-11}
10 ¹⁹		10^{-10}
10^{18}	x-rays	10^{-9}
10 ¹⁷		10^{-8}
10^{16}	ultraviolet	10^{-7}
10^{15}	visible	10^{-6}
10 ¹⁴	infrared	10^{-5}
10^{13}		10^{-4}
10^{12}		10^{-3}
10 ¹¹		10^{-2}
10 ¹⁰	microwave	10^{-1}
10 ⁹		1
108	TV, FM	10
10 ⁷		10^{2}
10^{6}	AM	10^{3}
10 ⁵		10 ⁴
10 ⁴	RF	10 ⁵
10 ³		10 ⁶

Lo spettro visibile

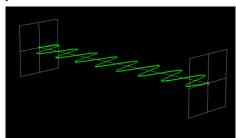
	The Visible Range	
Frequency (Hz)	Color	Wavelength (m)
1.0×10^{15}	near ultraviolet	3.0×10^{-7}
7.5×10^{14}	shortest visible blue	4.0×10^{-7}
6.5×10^{14}	blue	4.6×10^{-7}
5.6×10^{14}	green	5.4×10^{-7}
5.1×10^{14}	yellow	5.9×10^{-7}
4.9×10^{14}	orange	6.1×10^{-7}
3.9×10^{14}	longest visible red	7.6×10^{-7}
3.0×10^{14}	near infrared	1.0×10^{-6}

- ullet L'onda che abbiamo visto ha il vettore campo elettrico che oscilla parallelamente alla direzione x
 - Si definisce questo tipo di onda "polarizzata linearmente"
 - Naturalmente il vettore E può puntare in qualsiasi direzione
 - ullet La direzione del vettore ${f E}$ è la direzione in cui è polarizzata l'onda
 - Ad esempio ...

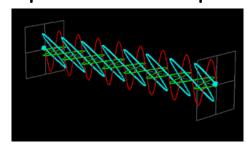
polarizzazione verticale



polarizzazione orizzontale



polarizzazione obliqua



- Vediamo in dettaglio come costruire un'onda polarizzata obliquamente tramite la sovrapposizione di altre due onde
 - ullet Utilizziamo due onde con polarizzazione Verticale e Orizzontale \mathbf{E}_x e \mathbf{E}_y

$$\mathbf{E}_{x}\left(\mathbf{r},t\right) = \tilde{\mathbf{E}}_{a}e^{i\omega t - ikz} \qquad \qquad \mathbf{E}_{y}\left(\mathbf{r},t\right) = \tilde{\mathbf{E}}_{b}e^{i\omega t - ikz}$$

ullet Scegliamo i due vettori $ilde{\mathbf{E}}_{\scriptscriptstyle a}$ e $ilde{\mathbf{E}}_{\scriptscriptstyle b}$ nel modo seguente

$$\tilde{\mathbf{E}}_a = E \, \hat{\mathbf{e}}_x$$
 $\tilde{\mathbf{E}}_b = E \, \hat{\mathbf{e}}_y$

• Sommiamo le due onde

$$\mathbf{E}_{s}(\mathbf{r},t) = \tilde{\mathbf{E}}_{a}e^{i\omega t - ikz} + \tilde{\mathbf{E}}_{b}e^{i\omega t - ikz} = E(\hat{\mathbf{e}}_{x}e^{i\omega t - ikz} + \hat{\mathbf{e}}_{y}e^{i\omega t - ikz})$$

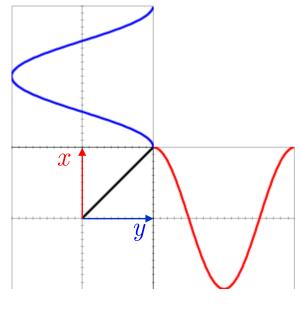
• Anziché scegliere opportunamente i vettori complessi $ilde{\mathbf{E}}_a$ e $ilde{\mathbf{E}}_b$ abbiamo scelto la costante E reale e di prendere la parte reale del vettore complesso \mathbf{E}_{s}

$$\mathbf{E}(z,t) = \operatorname{Re} \mathbf{E}_{s}(z,t) = \frac{E\hat{\mathbf{e}}_{y}\cos(\omega t - kz) + E\hat{\mathbf{e}}_{x}\cos(\omega t - kz)}{= E\left[\hat{\mathbf{e}}_{x} + \hat{\mathbf{e}}_{y}\right]\cos(\omega t - kz)}$$

- Abbiamo ottenuto un'onda polarizzata linearmente con polarizzazione obliqua
- ullet Visualizziamo il campo old E per z=0 in funzione del tempo

$$\mathbf{E}(0,t) = E[\hat{\mathbf{e}}_x + \hat{\mathbf{e}}_y]\cos\omega t$$

- ullet L'andamento temporale del campo sul piano z=0
 - La direzione del vettore è sempre la stessa
 - La lunghezza del vettore oscilla



• Utilizziamo adesso altre due onde

$$\mathbf{ ilde{E}}_{a} = E \, e^{i\pi/2} \, \hat{\mathbf{e}}_{x} \, \, \, \, \mathbf{ ilde{E}}_{b} = E \hat{\mathbf{e}}_{y}$$

- Il vettore $\tilde{\mathbf{E}}_a$ ha una parte immaginaria che introduce una fase $\left(+\frac{n}{2}\right)$
- Sommiamo le due onde

$$egin{align*} \mathbf{E}_{s}(z,t) &= \mathbf{ ilde{E}}_{a}e^{i\omega t-ikz} + \mathbf{ ilde{E}}_{b}e^{i\omega t-ikz} = E(\hat{\mathbf{e}}_{x}e^{irac{\pi}{2}}e^{i\omega t-ikz} + \hat{\mathbf{e}}_{y}e^{i\omega t-ikz}) \ \mathbf{E}_{s}\left(z,t
ight) &= E\left(\hat{\mathbf{e}}_{x}e^{i\omega t-ikz+i\pi/2} + \hat{\mathbf{e}}_{y}e^{i\omega t-ikz}
ight) \end{aligned}$$

Calcoliamo la parte reale

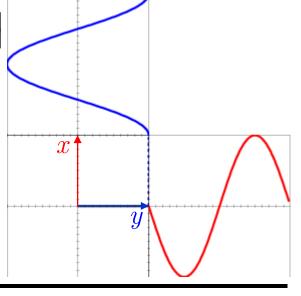
$$\mathbf{E}_{s}(z,t) = \operatorname{Re}\mathbf{E}(z,t) = E\left[\hat{\mathbf{e}}_{z}\cos\left(\omega t - kz + \pi/2\right) + \hat{\mathbf{e}}_{y}\cos\left(\omega t - kz\right)\right]$$

$$\mathbf{E}_{s}ig(z,tig) = Eig[-\hat{\mathbf{e}}_{x}\sinig(\omega t - kzig) + \hat{\mathbf{e}}_{y}\cosig(\omega t - kzig)ig]$$
• In questo caso la polarizzazione è circolare

- Studiamo il campo sul piano z=0

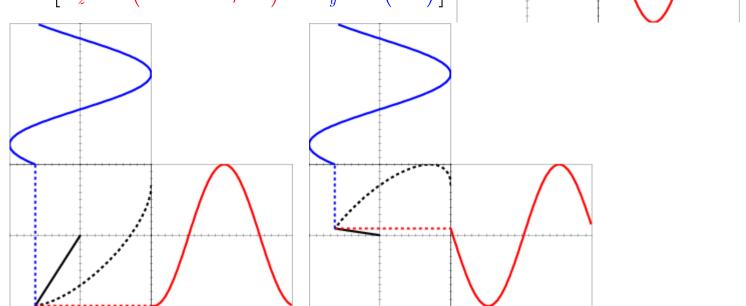
$$\mathbf{E}_{s}(0,t) = E\left[-\hat{\mathbf{e}}_{z}\sin\omega t + \hat{\mathbf{e}}_{y}\cos\omega t\right]$$

- Guardando verso la sorgente il vettore E ruota in senso antiorario: polarizzazione destrorsa
 - L'onda rappresentata viaggia "entrando" nella figura



- ullet Se lo sfasamento è $-\pi/2$ \to (visto dalla sorgente) ruota in senso orario: polarizzazione destra
- Infine consideriamo due ulteriori sfasamenti
 - $\bullet \ \phi = \pm \pi/4$
 - In questo caso le onde sono polarizzate ellitticamente
 - ullet ϕ positivo polarizzazione sinistra
 - ullet ϕ negativo polarizzazione destra

$$\mathbf{E}_{s}(0,t) = E[\hat{\mathbf{e}}_{z}\cos(\omega t + \pi / 4) + \hat{\mathbf{e}}_{y}\cos(\omega t)]$$



• Abbiamo scritto l'energia associata ai campi elettrici e magnetici con le

seguenti espressioni
$$U_E=rac{arepsilon_0}{2}\int E^2 dV$$

$$U_M=rac{1}{2\mu_0}\int B^2 dV$$

- Queste espressioni valgono anche per campi variabili nel tempo
- Per un campo elettromagnetico si scrive

$$U_{\scriptscriptstyle EM} = rac{1}{2} \int (arepsilon_{\scriptscriptstyle 0} E^2 + rac{1}{\mu_{\scriptscriptstyle 0}} B^2) dV$$

- Supponiamo che una distribuzione di cariche $\stackrel{\mu_0}{\rho}$ e di correnti J generi un campo elettromagnetico descritto dai campi E e B
 - Supponiamo che le cariche si muovano
 - ullet v è la velocità dell'elemento di carica contenuto in dV
 - ullet Calcoliamo il lavoro fatto dal campo elettromagnetico su di esse nel tempo dt
 - ullet Consideriamo un elemento di volume dV

$$dq = \rho dV$$
 $\mathbf{J}dV = \rho \mathbf{v}dV = dq\mathbf{v}$

- ullet Su questa carica (infinitesima) agisce la forza di Lorentz f (infinitesima)
- ullet Il lavoro fatto nel volume dV (w densità di lavoro) è dato da

$$dwdV = \mathbf{f} \cdot d\mathbf{s} = \mathbf{f} \cdot \mathbf{v}dt = dq(\mathbf{E} + \mathbf{v} \times \mathbf{B}) \cdot \mathbf{v}dt = dq\mathbf{E} \cdot \mathbf{v}dt$$
$$dwdV = \rho dV\mathbf{E} \cdot \mathbf{v}dt = \rho \mathbf{v} \cdot \mathbf{E}dtdV = \mathbf{J} \cdot \mathbf{E}dtdV$$

ullet Pertanto la potenza erogata nel volume dV è data da

$$\frac{dw}{dt}dV = \mathbf{J} \cdot \mathbf{E}dV$$

• Integrando sul volume

$$\frac{dW}{dt} = \int \frac{dw}{dt} dV = \int \mathbf{E} \cdot \mathbf{J} dV$$

• Consideriamo l'equazione di Maxwell

$$\mathbf{\nabla} \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} \qquad \mathbf{J} = \frac{1}{\mu_0} \mathbf{\nabla} \times \mathbf{B} - \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}$$

• Introducendo nell'equazione per la potenza

$$\frac{dW}{dt} = \int \left(\frac{1}{\mu_0} \mathbf{E} \cdot \mathbf{\nabla} \times \mathbf{B} - \varepsilon_0 \mathbf{E} \cdot \frac{\partial \mathbf{E}}{\partial t} \right) dV$$

Sviluppiamo il primo termine utilizzando (vedi diapositiva <u>55</u>)

$$\mathbf{E} \cdot \mathbf{\nabla} \times \mathbf{B} = -\mathbf{\nabla} \cdot (\mathbf{E} \times \mathbf{B}) + \mathbf{B} \cdot \mathbf{\nabla} \times \mathbf{E} \qquad \mathbf{\nabla} \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\mathbf{E} \cdot \mathbf{\nabla} \times \mathbf{B} = -\mathbf{\nabla} \cdot (\mathbf{E} \times \mathbf{B}) - \mathbf{B} \cdot \frac{\partial \mathbf{B}}{\partial t}$$

$$\mathbf{E} \cdot \mathbf{\nabla} \times \mathbf{B} = -\mathbf{\nabla} \cdot (\mathbf{E} \times \mathbf{B}) - \mathbf{B} \cdot \frac{\partial \mathbf{B}}{\partial t}$$

• Inseriamo nella espressione della potenza

$$\frac{dW}{dt} = \int \left(\frac{1}{\mu_0} \mathbf{E} \cdot \mathbf{\nabla} \times \mathbf{B} - \varepsilon_0 \mathbf{E} \cdot \frac{\partial \mathbf{E}}{\partial t} \right) dV$$

$$rac{dW}{dt} = \int \left(-rac{1}{\mu_0} oldsymbol{
abla} \cdot \left(\mathbf{E} imes \mathbf{B}
ight) - rac{1}{\mu_0} \mathbf{B} \cdot rac{\partial \mathbf{B}}{\partial t} - arepsilon_0 \mathbf{E} \cdot rac{\partial \mathbf{E}}{\partial t}
ight) dV$$

Osserviamo che

$$\mathbf{E} \cdot \frac{\partial \mathbf{E}}{\partial t} = \frac{1}{2} \frac{\partial E^2}{\partial t} \qquad \mathbf{B} \cdot \frac{\partial \mathbf{B}}{\partial t} = \frac{1}{2} \frac{\partial B^2}{\partial t}$$

Sostituendo

$$\frac{dW}{dt} = -\frac{1}{\mu_0} \int \boldsymbol{\nabla} \cdot \left(\mathbf{E} \times \mathbf{B} \right) dV - \frac{\partial}{\partial t} \frac{1}{2} \int \left(\frac{1}{\mu_0} B^2 + \varepsilon_0 E^2 \right) dV$$

- Il secondo integrale è l'energia elettromagnetica
- Trasformiamo il primo integrale con il teorema della divergenza

$$\frac{dW}{dt} = -\frac{1}{\mu_0} \int \mathbf{\nabla} \cdot \left(\mathbf{E} \times \mathbf{B} \right) dV - \frac{\partial}{\partial t} \frac{1}{2} \int \left(\frac{1}{\mu_0} B^2 + \varepsilon_0 E^2 \right) dV$$

• Utilizzando il teorema della divergenza

$$\int_{V} \mathbf{\nabla} \cdot (\mathbf{E} \times \mathbf{B}) dV = \oint_{\partial V} (\mathbf{E} \times \mathbf{B}) \cdot d\mathbf{a}$$

- ullet Il simbolo $\partial \, V$ indica la superficie che delimita il volume $\, V \,$
- Sostituendo

$$\frac{dW}{dt} = -\frac{1}{\mu_0} \oint_{\partial V} \left(\mathbf{E} \times \mathbf{B} \right) \cdot d\mathbf{a} - \frac{\partial}{\partial t} \frac{1}{2} \int_{V} \left(\frac{1}{\mu_0} B^2 + \varepsilon_0 E^2 \right) dV$$

Definiamo il vettore di Poynting

$$\mathbf{S} = \frac{1}{\mu_0} \mathbf{E} \times \mathbf{B} \qquad \frac{dW}{dt} = - \oint_{\partial V} \mathbf{S} \cdot d\mathbf{a} - \frac{\partial U_{EM}}{\partial t} \qquad \left[\mathbf{S} \right] = \mathbf{J} \mathbf{s}^{-1} \mathbf{m}^{-2}$$

• Interpretiamo l'equazione trovata

Il lavoro fatto sulle cariche e sulle correnti dalle forze elettromagnetiche è uguale alla diminuzione dell'energia del campo meno l'energia che fluisce attraverso la superficie che delimita il sistema

$$\frac{dW}{dt} = -\oint_{\partial V} \mathbf{S} \cdot d\mathbf{a} - \frac{\partial U_{EM}}{\partial t}$$

- La relazione precedente può essere messa in forma differenziale
 - Definiamo delle quantità per unità di volume: densità

Lavoro per unità di volume
$$oldsymbol{w}$$

$$W = \int_{V} w dV$$

Lavoro per unità
$$W=\int_V w dV$$
 Densità di energia $U_{EM}=\int_V u_{EM} dV$

• Utilizziamo il teorema della divergenza
$$\oint_{\partial V} \mathbf{S} \cdot d\mathbf{a} = \int_{V} \boldsymbol{\nabla} \cdot \mathbf{S} \, dV$$
• Sostituendo nella relazione iniziale

$$\int_{V} \frac{\partial w}{\partial t} dV = -\int_{V} \mathbf{\nabla} \cdot \mathbf{S} dV - \int_{V} \frac{\partial u_{EM}}{\partial t} dV$$

• Uguagliamo gli integrandi

$$rac{\partial w}{\partial t} = - oldsymbol{
abla} \cdot \mathbf{S} - rac{\partial u_{\scriptscriptstyle EM}}{\partial t} \
ightarrow oldsymbol{
abla} \cdot \mathbf{S} = -rac{\partial}{\partial t} (w + u_{\scriptscriptstyle EM})$$

- Attraverso una superficie che racchiude un sistema elettromagnetico può fluire energia verso l'esterno: $abla \cdot \mathbf{S} > 0$
 - ullet a) Se la potenza dw/dt è negativa: le cariche cedono energia al campo
 - ullet b) L'energia immagazzinata nel campo diminuisce: $du_{EM}/dt < 0$