Elettromagnetismo

Prof. Francesco Ragusa Università degli Studi di Milano

Lezione n. 33 - 04.05.2023

Paramagnetismo
Teoria macroscopica del magnetismo
nella materia
Magnetizzazione e Correnti di Magnetizzazione
Campo H

Anno Accademico 2022/2023

- Abbiamo descritto l'effetto del campo magnetico legato al moto orbitale degli elettroni
 - Abbiamo notato che quasi tutte le sostanze (molecole) hanno un momento angolare orbitale nullo
 - Abbiamo inoltre notato che gli elettroni posseggono un momento angolare intrinseco (spin) la cui proiezione lungo un asse assume due soli valori: $\pm \hbar/2$
 - Il momento magnetico intrinseco dell'elettrone è

$$\mu_{\scriptscriptstyle B}=9.3 imes10^{-24}\,{
m J/T} \qquad {
m m}=\pmrac{e\hbar}{2m_{\scriptscriptstyle o}}=\pm\mu_{\scriptscriptstyle B}$$
 $\mu_{\scriptscriptstyle B}$ magnetone di Bohr

• Per il principio di esclusione di Pauli gli elettroni tendono a disporsi in coppie con momento angolare totale nullo

- Anche il momento magnetico totale sarà nullo
- In alcune molecole il numero di elettroni è dispari (ad es. NO) oppure la configurazione elettronica è tale da non avere la cancellazione dello spin per due elettroni (\mathbf{O}_2)
 - In queste sostanze un campo magnetico esterno può allineare i momenti magnetici e far comparire un momento di dipolo
 - Nello stesso verso del campo magnetico applicato
 - Nel verso opposto rispetto al diamagnetismo

• Abbiamo visto che un dipolo magnetico in un campo magnetico B possiede un'energia potenziale data da

$$U = -\mathbf{m} \cdot \mathbf{B}$$

- In meccanica quantistica avviene la stessa cosa, ad esempio per lo spin di un elettrone atomico
 - ullet La proiezione del momento magnetico lungo ${f B}$ può avere solo 2 valori: ${f m}=\pm \mu_B$

$$U = \pm \mu_{\scriptscriptstyle B} B$$

- In un materiale a temperatura T gli elettroni hanno un'energia di agitazione termica ${\sim}KT$
 - Il numero di elettroni che hanno un determinato valore del momento magnetico si calcola utilizzando la statistica di Boltzmann

$$n = a \exp[-U / kT]$$

• Introducendo le energie dalla tabella

$$n_{ ext{up}} = a \exp\left[-\mu_{B} B / kT\right]$$
 $n_{ ext{down}} = a \exp\left[+\mu_{B} B / kT\right]$

ullet a si determina imponendo che il numero totale di elettroni sia N

$$n_{\text{up}} + n_{\text{down}} = N$$

 down

 $-\hbar/2$

$$n_{\text{up}} = a \exp\left[-\mu_{\text{B}} B / kT\right]$$
 $n_{\text{down}} = a \exp\left[+\mu_{\text{B}} B / kT\right]$

• Calcoliamo la costante a

$$n_{\text{up}} + n_{\text{down}} = N$$

$$a\left(e^{-\mu_B B/kT} + e^{+\mu_B B/kT}\right) = N$$

$$a = \frac{N}{e^{-\mu_B B/kT} + e^{+\mu_B B/kT}}$$

	$j_{_z}$	m	$oldsymbol{U}$
up	$+\hbar/2$	$-\mu_{_B}$	$\mu_{_B}B$
down	$-\hbar/2$	$+\mu_{_B}$	$-\mu_{_B}B$

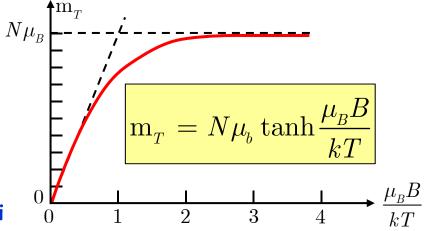
ullet Il momento magnetico totale del sistema di N elettroni $^{\sharp}$ si calcola con la somma

$$\mathbf{m}_{T} = n_{\mathrm{up}} \mathbf{m}_{\mathrm{up}} + n_{\mathrm{down}} \mathbf{m}_{\mathrm{down}} = n_{\mathrm{up}} \left(-\mu_{B} \right) + n_{\mathrm{down}} \left(+\mu_{B} \right)$$

$$\left| \mathbf{m}_{\scriptscriptstyle T}^{} = N \mu_{\scriptscriptstyle b}^{} anh rac{\mu_{\scriptscriptstyle B}^{} B}{kT}
ight|$$



- ullet La formula che abbiamo trovato fornisce il momento magnetico di un blocco di materia con N elettroni
 - \bullet Ricordiamo che il momento magnetico degli elettroni era "quantizzato" nella direzione del campo magnetico B
 - È nello stesso verso di B



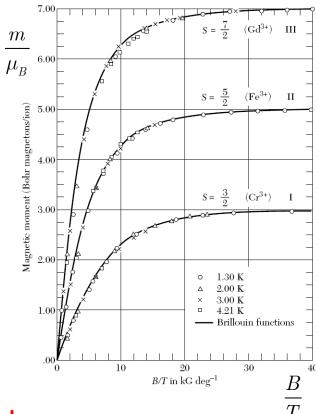
- \bullet Tutti i momenti magnetici degli elettroni si allineano nello stesso senso di B $n_{\rm up} = a \exp \left[-\mu_{\rm B} B \ / \ kT \, \right] \ \to 0 \qquad \tanh \frac{\mu_{\rm B} B}{kT} \to 1$
- $\mathbf{m} = g \frac{\mathbf{NB}_{-e}}{2m_e} \mathbf{S}$
- ullet Per campi magnetici dell'ordine di 1 T e temperatura ambiente

$$\frac{\mu_B B}{kT} \sim 0.02 \quad \tanh \frac{\mu_B B}{kT} \approx \frac{\mu_B B}{kT}$$

$$\mathrm{m}pprox rac{N\mu_{\scriptscriptstyle B}^2B}{kT}$$

• Questo è il risultato che si ottiene se si assume che il dipolo magnetico può assumere tutti i valori di energia fra $-\mu_B B$ e $+\mu_B B$

- La teoria descritta può essere estesa anche ad atomi e molecole con configurazioni di momento angolare più complicate
 - Il grafico mostra l'accordo fra calcoli teorici basati sui concetti descritti e dati sperimentali
 - ullet Per atomi con momento angolare $J=3/2,\,5/2,\,7/2$
 - Va sottolineato che la teoria che abbiamo discusso descrive i concetti fondamentali necessari per descrivere il paramagnetismo
 - Tuttavia per una trattazione rigorosa che riproduca esattamente i dati sperimentali occorre esaminare in maggiore dettaglio il momento angolare delle sostanze che si vogliono descrivere



- Analisi del genere sono al di là degli obiettivi del corso
- Il ferromagnetismo è un fenomeno legato anch'esso allo spin dell'elettrone
 - La descrizione microscopica del fenomeno è molto complicata
 - Daremo dei cenni dopo la trattazione fenomenologica del magnetismo nella materia

Magnetizzazione e suscettività

- Abbiamo visto che in presenza di campi magnetici esterni nella materia vengono indotti momenti di dipolo magnetico
 - Possono essere paralleli (paramagnetismo, ferromagnetismo) oppure anti-paralleli (diamagnetismo)
- Come nel caso del campo elettrico, per descrivere il magnetismo nella materia si introducono delle quantità macroscopiche
 - Le quantità macroscopiche si calcolano a partire dalle corrispondenti quantità microscopiche realizzando delle medie spaziali
 - Su volumi grandi se confrontati con i volumi atomici
 - Su volumi piccoli se confrontati con i volumi tipici del sistema macroscopico
- ullet La prima quantità importante (Magnetizzazione) viene introdotta per descrivere il momento magnetico indotto in un volume $\Delta\,V$ di materia
 - Si definisce magnetizzazione il momento magnetico totale per unità di volume
 - Il momento magnetico dovuto ai dipoli magnetici atomici

$$\mathbf{M} = rac{1}{\Delta V} \sum_{k} \mathbf{m}_{k}$$

- ullet Nel caso generale la magnetizzazione $\dot{f e}$ una funzione della posizione: ${f M}({f r})$
- ullet Le unità di misura $ig[\mathbf{m}ig] = \mathrm{Am}^2 = \mathrm{J}\mathrm{T}^{-1}$ $ig[\mathbf{M}ig] = \mathrm{Am}^{-1} = \mathrm{J}\mathrm{T}^{-1}\mathrm{m}^{-3}$

Magnetizzazione e suscettività

- Consideriamo adesso materiali diamagnetici o paramagnetici
 - A temperature non troppo basse e campi magnetici non troppo intensi
 - \bullet Abbiamo visto che in entrambi i casi i momenti di dipolo magnetico indotti dipendono linearmente dal campo B

$$\mathbf{m} = -N \frac{e^2 Z \overline{R_0^2}}{6m_e} \mathbf{B}$$

- $\mathbf{m} = N \mu_B \tanh \frac{\mu_B B}{kT} \approx N \frac{\mu_B^2 B}{kT}$
- ullet Se nelle formule precedenti N diventa una densità di elettroni per unita di volume le espressioni danno la magnetizzazione
 - ullet Si definisce suscettività magnetica $\chi_{
 m m}$ di una sostanza ullet

$$\mathbf{M}=\chi_{_{\mathrm{m}}}rac{\mathbf{B}}{\mu_{_{0}}}$$

- La definizione precedente è quella "logica" ma è differente da quella in uso che è definita in funzione del campo H
 - Lo vedremo in seguito

m m	kT		k	T
$N\mu_B$ $ -$			_	
\ E //				
	ī	Ī	Ī	$\longrightarrow \mu_{\scriptscriptstyle B} B$
0 1	2	3	4	$\rightarrow \frac{\mu_B B}{kT}$

Material	Susceptibility	Material	Susceptibility
Diamagnetic:		Paramagnetic:	
Bismuth	-1.6×10^{-4}	Oxygen	1.9×10^{-6}
Gold	-3.4×10^{-5}	Sodium	8.5×10^{-6}
Silver	-2.4×10^{-5}	Aluminum	2.1×10^{-5}
Copper	-9.7×10^{-6}	Tungsten	7.8×10^{-5}
Water	-9.0×10^{-6}	Platinum	2.8×10^{-4}
Carbon Dioxide	-1.2×10^{-8}	Liquid Oxygen (-200° C)	3.9×10^{-3}
Hydrogen	-2.2×10^{-9}	Gadolinium	4.8×10^{-1}

Densità di corrente superficiali

- Richiamiamo la definizione di densità di corrente superficiale (vedi diapositiva 33)
 - Per definizione la corrente è il flusso della densità di corrente

$$I = \int_{S} \mathbf{J}(\mathbf{r}) \cdot \hat{\mathbf{n}} da$$

- Supponiamo per semplicità che il conduttore sia un parallelepipedo orientato come in figura
- Per semplicità supponiamo che la densità di corrente J non vari nella direzione y

$$I = \int_{S} \mathbf{J}(x,z) \cdot \hat{\mathbf{n}} da = \int_{0}^{L} dx \left[\int_{0}^{d} \mathbf{J}(x,z) dz \right] \cdot \hat{\mathbf{n}}$$

• Definiamo la densità superficiale di corrente K

$$\mathbf{K}(x) = \int_0^d \mathbf{J}(x,z) dz$$

La corrente trasportata dal conduttore è pertanto

$$I = \int_0^L \mathbf{K}(x) \cdot \hat{\mathbf{n}} dx$$
 $\hat{\mathbf{n}}$ è la normale al cammino di integrazione da 0 a L

Se K non dipende da x

$$I = KL$$

Densità di corrente superficiali

• Riscriviamo la formula per il potenziale vettore in funzione della densità superficiale di corrente (vedi diapositiva 92) $z \uparrow$

$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{J}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} dV' \qquad dV' = dx' dy' dz'$$

- L'integrale è esteso a tutto lo spazio
 - ullet Ovviamente contribuiscono solo le regioni in cui $J \neq 0$
- Se il conduttore è molto sottile, al limite infinitesimo è conveniente utilizzare la densità superficiale di corrente

$$\mathbf{K}(x) = \int_0^d \mathbf{J}(x, z') dz' \qquad \mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{K}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} da' \qquad da' = dx' dy'$$

ullet Per completezza diamo anche la formula del potenziale vettore nel caso di una corrente trasportata da un conduttore di sezione infinitesima (L o 0)

$$\mathbf{I} = \int_{S} \mathbf{J}(\mathbf{r}) da \qquad \mathbf{A}(\mathbf{r}) = \frac{\mu_{0}}{4\pi} \int \frac{\mathbf{I}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} dl' = \frac{\mu_{0}I}{4\pi} \int \frac{d\mathbf{l}'}{|\mathbf{r} - \mathbf{r}'|}$$

- Consideriamo un blocco di materia uniformemente magnetizzato
 - ullet Per semplicità supponiamo che la magnetizzazione M sia diretta lungo l'asse z
 - Non ci preoccupiamo di come la magnetizzazione sia causata o mantenuta
 - ullet Ricordiamo che la magnetizzazione M è la somma dei contributi di tutti i dipoli magnetici elementari contenuti nel blocco di materia
- ullet Suddividiamo adesso il blocco in "fette" di spessore dz e perpendicolari a M
 - Possiamo ulteriormente suddividere la fetta in tanti piccoli "cubetti"
 - Il momento di dipolo magnetico del cubetto è

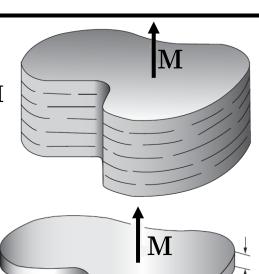
$$\mathbf{m} = \mathbf{M}dV = \mathbf{M}dadz$$

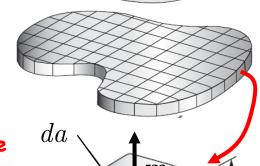
ullet Sappiamo che ogni momento di dipolo è equivalente ad una spira di area da e corrente i

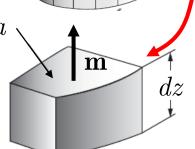
$$m = ida = (Mdz)da$$

• Da cui otteniamo

$$i = Mdz$$







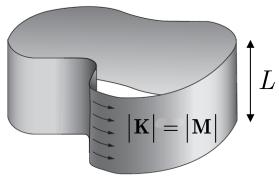
dz

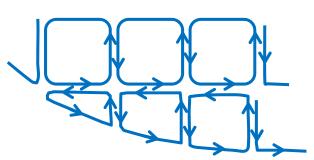
ullet Osserviamo che, dato che la magnetizzazione M è costante, tutte le correnti delle piccole spire sono uguali fra di loro

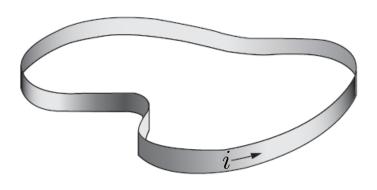
$$i = Mdz$$

- Tuttavia le correnti ai bordi non si elidono
 - Per la discontinuità del materiale
- ullet In definitiva l'intera "fetta" di materiale genera lo stesso momento magnetico di un "nastro" di corrente superficiale i

$$I = \int_0^L M dz$$
 $I = \int_0^L K dz$
 $\left| \mathbf{K} \right| = \left| \mathbf{M} \right|$

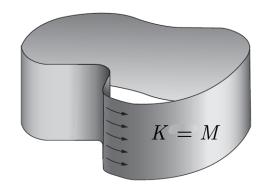






• Il campo magnetico generato dal materiale magnetizzato all'esterno del blocco è

$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{K}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} da' \qquad \mathbf{B} = \mathbf{\nabla} \times \mathbf{A}$$

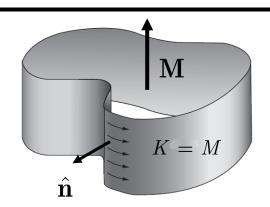


- Si tratta di un campo macroscopico
 - Non bisogna andare molto vicini alla superficie
 - Molto vicino significa a distanze dell'ordine delle dimensioni atomiche
- Consideriamo adesso il campo all'interno del blocco
 - Si tratta di una discussione analoga a quella del campo elettrico all'interno del dielettrico (diapositiva 294, I parte)
 - In quel caso avevamo utilizzato il fatto che il campo elettrostatico è conservativo
- ullet Si potrebbe dimostrare che il campo B generato dalla corrente superficiale K è uguale alla media del campo microscopico B' all'interno del blocco
 - Il campo B' è quello generato dai dipoli magnetici atomici
 - È un campo con forti variazioni spaziali all'interno della materia
 - A livello macroscopico è importante la media spaziale
 - ullet Per questa dimostrazione si utilizza il fatto che ${f B}$ è solenoidale

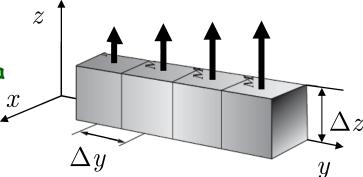
Correnti di magnetizzazione

- Abbiamo visto che gli effetti della magnetizzazione possono essere descritti introducendo una densità superficiale di corrente K=M
 - Dimostreremo che questo risultato si può esprimere in generale come

$$\mathbf{K} = \mathbf{M} \times \hat{\mathbf{n}}$$



- ullet Il versore $\hat{\mathbf{n}}$ è la normale alla superficie
- ullet facile verificare che per M costante la formula riproduce il risultato che abbiamo utilizzato fino ad ora
- Se la magnetizzazione non è uniforme compaiono anche correnti all'interno del volume della materia magnetizzata
 - Per dimostrarlo consideriamo un blocco di materiale suddiviso in tanti blocchetti
 - La magnetizzazione può essere considerata uniforme in ogni blocchetto
 - ullet Assumiamo che sia diretta lungo l'asse z
 - ullet $\mathbf M$ varia spostandosi lungo l'asse y



Correnti di magnetizzazione

 Ogni blocchetto può essere sostituito da una spira percorsa da una corrente

$$i = M_z \Delta z$$

• La corrente nella prima spira è

$$i(y) = M_z(y)\Delta z$$

• La corrente nella seconda spira è

$$i \left(y + \Delta y \right) = M_z \left(y + \Delta y \right) \Delta z \approx M_z \left(y \right) \Delta z + \frac{\partial M_z}{\partial y} \Delta y \Delta z$$

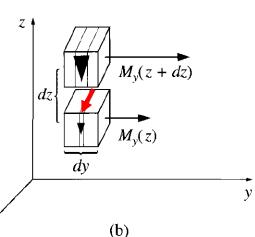
ullet La differenza fra le correnti delle spire genera una corrente Δi lungo x

$$\Delta i = i \left(y + \Delta y \right) - i \left(y \right) = M_z \left(y \right) \Delta z + \frac{\partial M_z}{\partial y} \Delta y \Delta z - M_z \left(y \right) \Delta z$$

$$\Delta i = \frac{\partial M_z}{\partial y} \Delta y \Delta z$$

 \bullet Analogamente una componente della magnetizzazione lungo y che varia lungo z genera un altro contributo di corrente lungo x

$$\Delta i = -\frac{\partial M_{y}}{\partial z} \Delta y \Delta z$$



Correnti di magnetizzazione

Riassumiamo il risultato

$$\Delta i = \frac{\partial M_z}{\partial y} \Delta y \Delta z - \frac{\partial M_y}{\partial z} \Delta y \Delta z$$

- Sappiamo che una corrente è il risultato del flusso di una densità di corrente attraverso una superficie
- ullet La corrente che abbiamo calcolato è nella direzione x
 - ullet Perpendicolare alla superficie $\Delta y \Delta z$
 - ullet Definisce la componente x del vettore densità di corrente

$$\Delta i = \left(\frac{\partial M_z}{\partial y} - \frac{\partial M_y}{\partial z}\right) \Delta y \Delta z = J_x \Delta y \Delta z \qquad J_x = \frac{\partial M_z}{\partial y} - \frac{\partial M_y}{\partial z}$$

$$\nabla \times \mathbf{M} = \mathbf{J}_{\mathrm{M}}$$

- Occorre osservare che questa corrente è il risultato dell'orientamento dei dipoli atomici
 - ullet Una situazione analoga a quanto avveniva in elettrostatica per le cariche di volume $ho_{
 m P} =
 abla \cdot {
 m P}$
 - ullet A volte si usa anche l'aggettivo legato (bound) $oldsymbol{
 abla} imes \mathbf{M} = \mathbf{J}_{\mathrm{b}}$

- Anche nel caso appena descritto il campo magnetico generato dalla magnetizzazione si può calcolare utilizzando le formule introdotte per il campo magnetico generato da correnti reali
- Ricaviamo adesso in modo più formale (matematico) le relazioni che abbiamo ricavato con ragionamenti fisici
 - ullet Supponiamo di avere un blocco di materia magnetizzata caratterizzata con un vettore di magnetizzazione $M({f r})$
 - ullet Consideriamo un elemento di volume dv'
 - Ha un momento magnetico

$$d\mathbf{m} = \mathbf{M}(\mathbf{r}')dv'$$

• Ricordiamo il potenziale vettore di un dipolo nella approssimazione di grande distanza (dia. <u>103</u>)

$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \mathbf{m} \times \frac{\mathbf{r}}{r^3} \qquad \longrightarrow \qquad d\mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} d\mathbf{m} \times \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|^3}$$

Dipolo nell'origine

• Il potenziale vettore di tutto il corpo si calcola integrando

$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int d\mathbf{m} \times \frac{\mathbf{r} - \mathbf{r}'}{\left|\mathbf{r} - \mathbf{r}'\right|^3} = \frac{\mu_0}{4\pi} \int \mathbf{M}(\mathbf{r}') \times \frac{\mathbf{r} - \mathbf{r}'}{\left|\mathbf{r} - \mathbf{r}'\right|^3} dv'$$

Dipolo in \mathbf{r}'

$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \mathbf{M}(\mathbf{r}') \times \frac{\mathbf{r} - \mathbf{r}'}{\left|\mathbf{r} - \mathbf{r}'\right|^3} dv'$$
 Utilizziamo la relazione • L'operatore ∇' agisce sulla variabile \mathbf{r}'
$$\frac{\mathbf{r} - \mathbf{r}'}{\left|\mathbf{r} - \mathbf{r}'\right|^3} = \nabla' \frac{1}{\left|\mathbf{r} - \mathbf{r}'\right|}$$

- Utilizziamo la relazione

$$\begin{array}{ll} \bullet \mbox{ Otteniamo} & \mbox{\bf A}({\bf r}) = \frac{\mu_0}{4\pi} \int \mbox{\bf M}({\bf r}') \times \mbox{\bf \nabla}' \frac{1}{\left| {\bf r} - {\bf r}' \right|} dv' \\ \bullet \mbox{ Utilizziamo l'identità (vedi diapositiva $\underline{\bf 55}$)} \end{array}$$

$$\nabla \times (f\mathbf{C}) = f(\nabla \times \mathbf{C}) - \mathbf{C} \times (\nabla f) \qquad \mathbf{C} \times (\nabla f) = f(\nabla \times \mathbf{C}) - \nabla \times (f\mathbf{C})$$

$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \frac{1}{|\mathbf{r} - \mathbf{r}'|} (\nabla' \times \mathbf{M}(\mathbf{r}')) dv' - \frac{\mu_0}{4\pi} \int \nabla' \times \frac{\mathbf{M}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} dv'$$

ullet La forma del primo integrale suggerisce di introdurre $egin{aligned} \mathbf{J}_{_{\mathrm{M}}} &= oldsymbol{
abla} imes \mathbf{M} \end{aligned}$

$$|\mathbf{J}_{_{\mathrm{M}}}| = \mathbf{
abla} imes \mathbf{M}$$

- Ha la forma del potenziale vettore generato da una densità di corrente volumica
- Otteniamo, per il primo termine

$$\int \frac{1}{|\mathbf{r} - \mathbf{r}'|} (\mathbf{\nabla}' \times \mathbf{M}(\mathbf{r}')) dv' = \int \frac{\mathbf{J}_{\mathrm{M}}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} dv'$$

$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{J}_{\mathrm{M}}(\mathbf{r}')}{\left|\mathbf{r} - \mathbf{r}'\right|} dv' - \frac{\mu_0}{4\pi} \int \mathbf{\nabla}' \times \frac{\mathbf{M}(\mathbf{r}')}{\left|\mathbf{r} - \mathbf{r}'\right|} dv'$$

• Per il secondo integrale utilizziamo la relazione†

$$\int \mathbf{\nabla} \times \mathbf{A} dv' = \oint_{S} \mathbf{n} \times \mathbf{A} da$$

Otteniamo

$$-\frac{\mu_0}{4\pi} \int \mathbf{\nabla}' \times \frac{\mathbf{M}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} dv' = \frac{\mu_0}{4\pi} \oint_{S} \frac{\mathbf{M}(\mathbf{r}') \times \mathbf{n}'}{|\mathbf{r} - \mathbf{r}'|} da'$$

- ullet Ha la forma del potenziale ${f A}$ generato da una densità di corrente superficiale
 - Definiamo

$$\mathbf{K}(\mathbf{r}') = \mathbf{M}(\mathbf{r}') \times \mathbf{n}'$$

Otteniamo infine

$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{J}_{\mathrm{M}}(\mathbf{r}')}{\left|\mathbf{r} - \mathbf{r}'\right|} dv' + \frac{\mu_0}{4\pi} \oint_{S} \frac{\mathbf{K}(\mathbf{r}')}{\left|\mathbf{r} - \mathbf{r}'\right|} da'$$

• †Vedi Griffiths D. - Introduction to electrodynamics, 3° ed. - esercizio 1.60b

- Nello studio del campo elettrico avevamo osservato che il campo elettrico è discontinuo quando si attraversa una densità superficiale di carica σ
 - ullet La componente normale del campo è discontinua: $E_{
 m 1n}-E_{
 m 2n}=\sigma/arepsilon_0$
- Anche il campo magnetico ha delle discontinuità
 - Quando si attraversa una densità superficiale di corrente
 - Per il campo magnetico la discontinuità riguarda la componente tangenziale
- Consideriamo una densità di corrente superficiale K
 - Consideriamo il cammino chiuso in figura
 - Il senso di percorrenza del cammino e il verso di K sono legati dalla regola della vite destrorsa

$$\oint_C \mathbf{B} \cdot d\mathbf{l} = \mu_0 \int_S \mathbf{J} \cdot d\mathbf{a}$$

• Assumiamo che il tratto verticale sia di lunghezza trascurabile

$$\oint_C \mathbf{B} \cdot d\mathbf{l} = B_{1\mathrm{t}} L - B_{2\mathrm{t}} L$$
 inoltre $\int_S \mathbf{J} \cdot d\mathbf{a} = \int_0^L K dl = K L$

• Otteniamo pertanto

$$B_{1t}L - B_{2t}L = \mu_0 KL$$

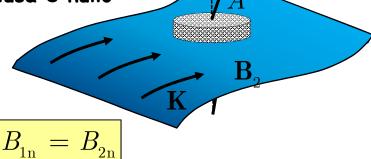
$$B_{1t} - B_{2t} = \mu_0 K$$

- Studiamo adesso il comportamento della componente normale
 - Dimostriamo che la componente normale si conserva
 - Ricordiamo che nel caso del campo elettrostatico era la componente tangenziale che si conservava
- ullet Consideriamo ancora una volta una densità di corrente superficiale ${f K}$
 - In questo caso consideriamo la superficie chiusa indicata in figura
 - Utilizziamo la proprietà che il flusso del campo magnetico attraverso una superficie chiusa è nullo

$$\oint_{S} \mathbf{B} \cdot d\mathbf{a} = 0$$

 Assumiamo che il contributo della superficie laterale sia trascurabile

$$B_{1n}A - B_{2n}A = 0$$



- Le due condizioni che abbiamo visto possono essere sintetizzate in un'unica relazione vettoriale
 - ${f B}_{
 m sopra} {f B}_{
 m sotto} = \mu_0 {f K} imes \hat{f n}$ Il verso di $\hat{f n}$ definisce "sopra" e "sotto"
 - ullet Osserviamo che $\mathbf{K} imes \hat{\mathbf{n}}$ non ha una componente normale alla superficie
 - $(\mathbf{K} imes \hat{\mathbf{n}}) \cdot \hat{\mathbf{n}} = 0$ La componente normale di \mathbf{B} è continua

• Illustriamo la relazione che lega la discontinuità alla eventuale densità di corrente superficiale

$$\mathbf{B}_{\text{sopra}} - \mathbf{B}_{\text{sotto}} = \mu_0 \mathbf{K} \times \hat{\mathbf{n}}$$

• Possiamo costruire localmente una terna di versori

ullet La normale alla superficie $\hat{\mathbf{n}}$

ullet La direzione dell'eventuale corrente superficiale $\hat{\mathbf{s}}$

ullet Il versore $\hat{\mathbf{p}}$ perpendicolare agli altri due

• Il prodotto

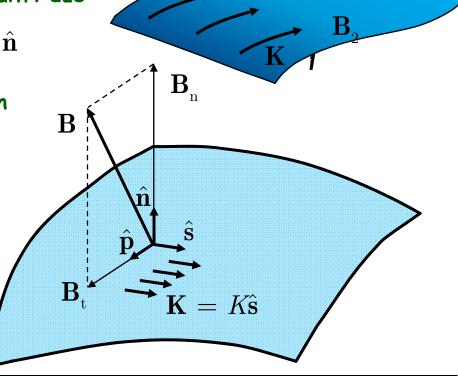
$$\mathbf{K} \times \hat{\mathbf{n}} = K \hat{\mathbf{s}} \times \hat{\mathbf{n}}$$

è nella direzione del versore $\hat{\mathbf{p}}$

 \bullet La componente tangenziale \boldsymbol{B}_{t} è in questa direzione

 \bullet Nella differenza $B_{sopra}-B_{sotto}$ le componenti normali si elidono

- Sono uguali (continue)
- ullet L'eventuale discontinuità di B è nella componente tangenziale
 - È determinata dalla densità di corrente superficiale K

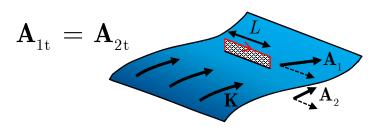


- Come per il campo elettrico anche per il campo magnetico si ha che il potenziale vettore è continuo
 - In realtà c'è un'arbitrarietà
 - ullet Infatti abbiamo visto che il potenziale vettore A non \dot{ullet} univocamente determinato
 - ullet La sostituzione ${
 m A}
 ightarrow {
 m A} +
 abla f$ dà lo stesso campo ${
 m B}$
 - ullet Utilizzando questa arbitrarietà si può sempre richiedere che $abla {\cdot} {
 m A} = 0$
 - In questo caso si dimostra facilmente che la componente normale è continua
- $\mathbf{A}_{1\mathbf{n}} = \mathbf{A}_{2\mathbf{n}}$
- Anche la componente tangenziale è continua
 - Infatti per il teorema di Stokes

$$\oint_C \mathbf{A} \cdot d\mathbf{l} = \int_S \mathbf{\nabla} \times \mathbf{A} \cdot d\mathbf{a} = \int_S \mathbf{B} \cdot d\mathbf{a} = \Phi$$

- \bullet Se l'altezza del rettangolo scelto come cammino è infinitesima allora $\Phi=0$
- Si dimostra come di consueto che
- Per finire si può dimostrare che

$$\frac{\partial \mathbf{A}_1}{\partial n} - \frac{\partial \mathbf{A}_2}{\partial n} = -\mu_0 \mathbf{K}$$



Boundary conditions su A

- Illustriamo l'ultima condizione sulla derivata normale
- Il vettore A può essere scomposto lungo tre direzioni perpendicolari
 - ullet La normale alla superficie $\hat{\mathbf{n}}$
 - Due direzioni tangenti alla superficie
 - ullet La direzione $\hat{\mathbf{s}}$ di una eventuale densità superficiale di corrente \mathbf{K}
 - $f \cdot$ La direzione $\hat{f p}$ perpendicolare a $\hat{f n}$ e $\hat{f s}$

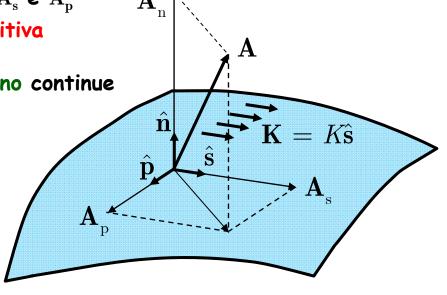
ullet Il vettore A ha tre componenti: $A_{
m n}$, $A_{
m s}$ e $A_{
m p}$

 La condizione enunciata nella diapositiva precedente dice che

ullet Le derivate normali di A_n e A_p sono continue

- La derivata normale di A
 - è discontinua e nella direzione s
 - È la direzione della densità di corrente superficiale K
- Si ha pertanto

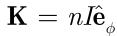
$$\frac{\partial A_{\rm 1s}}{\partial n} - \frac{\partial A_{\rm 2s}}{\partial n} = -\mu_0 K$$



Esempio: campo B del solenoide

- Verifichiamo le condizioni di discontinuità appena enunciate per un solenoide
 - Consideriamo un solenoide infinito
 - ullet Ci sono n spire per unità di lunghezza
 - ullet La corrente di una spira I
 - ullet Il campo di induzione magnetica ${f B}$ è nullo all'esterno
 - All'interno vale $\mathbf{B}=\mu_{\scriptscriptstyle 0} n I \hat{\mathbf{e}}_{\scriptscriptstyle z}$
- La corrente trasportata dalle spire può essere considerata una corrente superficiale parallela alla superficie del cilindro
 - ullet La normale alla superficie $\dot{f e}$ il versore $\hat{f e}_a$
- Abbiamo pertanto

$$\mathbf{K} \times \hat{\mathbf{n}} = nI\hat{\mathbf{e}}_{\phi} \times \hat{\mathbf{e}}_{\rho} = -nI\hat{\mathbf{e}}_{z}$$



 \times

- ullet La componente di ${
 m B}$ perpendicolare alla superficie ullet nulla: $B_
 ho=0$
 - È nulla sia all'interno che all'esterno: è continua
- ullet La componente di ${f B}$ parallela alla superficie è B_z
 - ullet È nulla all'esterno $(B_z=0)$ e vale $B_z=\mu_0 nI$ all'interno

$$B_{z \, \text{ext}} - B_{z \, \text{int}} = -\mu_0 n I$$

- ullet Verso positivo di $\hat{f n}$ indica "sopra"
- Abbiamo pertanto verificato che

$$\mathbf{B}_{\text{sopra}} - \mathbf{B}_{\text{sotto}} = \mu_0 \mathbf{K} \times \hat{\mathbf{n}}$$

Il campo M è discontinuo

ullet Il formalismo che abbiamo sviluppato fino ad ora permette di calcolare il campo magnetico quando si conosce la magnetizzazione M di un corpo

$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int_V \frac{\mathbf{J}_{\mathrm{M}}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} dv' + \frac{\mu_0}{4\pi} \oint_S \frac{\mathbf{K}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} da' \qquad \mathbf{\nabla} \times \mathbf{M} = \mathbf{J}_{\mathrm{M}} \qquad \mathbf{K}(\mathbf{r}') = \mathbf{M}(\mathbf{r}') \times \mathbf{n}'$$

- In questa espressione l'integrale di superficie è calcolato sulla superficie del materiale magnetizzato
- ullet La magnetizzazione $\mathbf{M}(\mathbf{r})$ è diversa da zero all'interno del corpo
- Nella derivazione avremmo potuto estendere l'integrale a tutto lo spazio
 - ullet In particolare in regioni in cui $\mathbf{M}(\mathbf{r})=\mathbf{0}$
 - In questo caso l'integrale di superficie diventa nullo
- La formula si riduce a

$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{J}_{\mathrm{M}}(\mathbf{r}')}{\left|\mathbf{r} - \mathbf{r}'\right|} dv' = \frac{\mu_0}{4\pi} \int \frac{\mathbf{\nabla}' \times \mathbf{M}(\mathbf{r}')}{\left|\mathbf{r} - \mathbf{r}'\right|} dv'$$

- Osserviamo che in questo caso l'integrando non è sempre continuo
- ullet Sulla superficie dei corpi magnetizzati la magnetizzazione ${f M}$ è discontinua
 - ullet Le derivate di una funzione discontinua producono delle funzioni singolari (δ di Dirac) che riproducono il contributo delle correnti superficiali

 Il campo generato dalla magnetizzazione ha la stessa espressione matematica del campo generato da una corrente reale (vedi diapositiva 92)

$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{J}_{\mathrm{M}}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} dv' \qquad \qquad \mathbf{J}_{\mathrm{M}} = \mathbf{\nabla} \times \mathbf{M}$$

• Possiamo pertanto includere il contributo della magnetizzazione nell'equazione di Maxwell che lega il campo alle correnti di conduzione (cariche libere)

$$\mathbf{
abla} imes \mathbf{B} = \mu_0 \mathbf{J}_{\mathrm{C}} \quad \longrightarrow \quad \mathbf{
abla} imes \mathbf{B} = \mu_0 \left(\mathbf{J}_{\mathrm{C}} + \mathbf{J}_{\mathrm{M}} \right)$$

- Abbiamo aggiunto il suffisso "C" per esplicitare quali sono le correnti dovute ad un reale trasposto di carica elettrica
- \bullet Introducendo l'espressione per $J_{\rm M}$ otteniamo

$$\frac{1}{\mu_0} \mathbf{\nabla} \times \mathbf{B} = \mathbf{J}_{\mathrm{C}} + \mathbf{\nabla} \times \mathbf{M} \qquad \mathbf{\nabla} \times \frac{\mathbf{B}}{\mu_0} - \mathbf{\nabla} \times \mathbf{M} = \mathbf{J}_{\mathrm{C}} \qquad \mathbf{\nabla} \times \left(\frac{\mathbf{B}}{\mu_0} - \mathbf{M}\right) = \mathbf{J}_{\mathrm{C}}$$
• Definiamo il campo H
$$\mathbf{H} = \frac{\mathbf{B}}{\mu_0} - \mathbf{M} \qquad \mathbf{\nabla} \times \mathbf{H} = \mathbf{J}_{\mathrm{C}}$$

- Notiamo che H non ha le dimensioni di B
 - ullet Ha le dimensioni della magnetizzazione (${
 m A~m^{-1}})$

- Il campo H ha nomi diversi in letteratura
 - Viene anche chiamato "campo magnetico"
 - Nel nostro corso abbiamo sempre chiamato campo magnetico il campo B
 - Chiameremo il nuovo campo "campo H"
- ullet Il campo H è analogo al campo D introdotto in elettrostatica
 - Lega il campo alle sorgenti esterne (correnti di conduzione) eliminando la dipendenza esplicita dalle sorgenti indotte (correnti di magnetizzazione)
 - ullet A differenza del campo D il campo H è molto utile ed è usato nelle applicazioni e nel lavoro sperimentale
 - La ragione sta nel fatto che la grandezza fisica che si controlla per generare un campo magnetico è la corrente

$$\mathbf{
abla} imes \mathbf{H} = \mathbf{J}_{\mathrm{C}} \qquad \longrightarrow \qquad \oint_{C} \mathbf{H} = i_{\mathrm{C}}$$

- Nel caso elettrostatico la grandezza fisica che si controlla sono i potenziali dei conduttori
 - Il campo D è invece legato alle densità di carica reali che non sono facilmente controllabili

$$\nabla \cdot \mathbf{D} = \rho_{\scriptscriptstyle f}$$

- \bullet Come nel caso del campo elettrostatico anche adesso bisogna sottolineare che il campo H non può sostituire B
 - Per determinare completamente un campo vettoriale è necessario definirne sia il rotore sia la divergenza
 - In generale la divergenza di H non è definita
 - Dipende dalla magnetizzazione
 - Pertanto le equazioni necessarie per risolvere il problema sono

$$\mathbf{\nabla} \times \mathbf{H} = \mathbf{J}_{\mathrm{C}} \qquad \mathbf{\nabla} \cdot \mathbf{B} = 0 \qquad \mathbf{B} = \mathbf{f} (\mathbf{H})$$

- Inoltre le opportune condizioni al contorno
- Se nel problema sono presenti più materiali occorre imporre le condizioni di raccordo dei campi alle superfici di passaggio da un materiale all'altro
- Ricaviamo le condizioni di discontinuità (raccordo) per il campo H
 - ullet Le condizioni per il campo ${f B}$ sono state ricavate utilizzando le equazioni

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J}$$
 $\nabla \cdot \mathbf{B} = 0$

- ullet Il rotore di H è formalmente identico al rotore di B e porterà a condizioni sulla componente tangenziale di H analoghe a quelle di B
- Abbiamo bisogno della divergenza di H

• Calcoliamo la divergenza di H

$$\mathbf{H} = rac{\mathbf{B}}{\mu_0} - \mathbf{M}$$
 $lackbox{}l$

Otteniamo

ullet La condizione sulla componente tangenziale si ottiene come nel caso di ${f B}$

$$\nabla \times \mathbf{H} = \mathbf{J}_{\mathbf{C}} \longrightarrow \oint_{C} \mathbf{H} \cdot d\mathbf{l} = \int_{S} \mathbf{J}_{\mathbf{C}} \cdot d\mathbf{a}$$

$$H_{1t} - H_{2t} = K_{\mathbf{C}}$$

- Per la componente normale calcoliamo il flusso di H attraverso la superficie di un cilindro di altezza trascurabile
 - Abbiamo

$$\nabla \cdot \mathbf{H} = -\nabla \cdot \mathbf{M} \longrightarrow \oint_{S} \mathbf{H} \cdot \hat{\mathbf{n}} da = -\oint_{S} \mathbf{M} \cdot \hat{\mathbf{n}} da$$

ullet Contribuiscono solo le superfici circolari A

$$\mathbf{H}_{ ext{sopra}}^{ot} - \mathbf{H}_{ ext{sotto}}^{ot} = -ig(\mathbf{M}_{ ext{sopra}}^{ot} - \mathbf{M}_{ ext{sotto}}^{ot}ig)$$