Elettromagnetismo

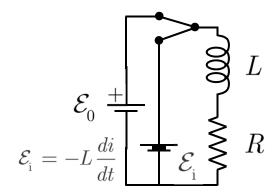
Prof. Francesco Ragusa Università degli Studi di Milano

Lezione n. 31 - 18.04.2023

Energia magnetica
Energia potenziale magnetica
Induttanza come elemento di circuito
Oscillatore LC

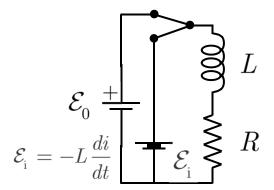
Anno Accademico 2022/2023

- Nell'esempio precedente abbiamo supposto che il solenoide venisse "spento" lentamente
 - Si è "staccata" la batteria ma nello stesso istante si è chiuso il circuito su un altro ramo in modo che l'energia venisse dissipata nella resistenza

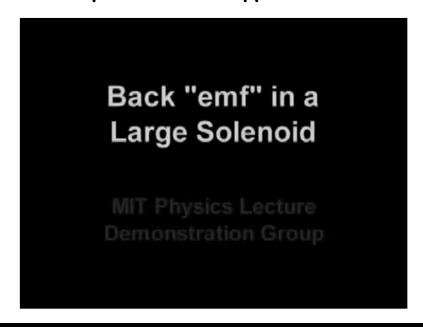


- ullet Una discontinuità nella corrente genererebbe una ${
 m fem}$ infinita
 - ullet In pratica si sviluppa una ${
 m fem}$ molto elevata che genera scariche elettriche

- Nell'esempio precedente abbiamo supposto che il solenoide venisse "spento" lentamente
 - Si è "staccata" la batteria ma nello stesso istante si è chiuso il circuito su un altro ramo in modo che l'energia venisse dissipata nella resistenza



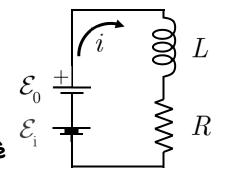
- ullet Una discontinuità nelle corrente genererebbe una ${
 m fem}$ infinita
 - In pratica si sviluppa una fem molto elevata che genera scariche elettriche



Energia Magnetica

 Abbiamo visto che in un circuito con induttanza e resistenza appare una forza elettromotrice

ullet Il lavoro che la batteria fa nell'intervallo di tempo dt per trasportare la carica dq=Idt attraverso il circuito \dot{ullet}



 $Id\Phi$

$$dW_{b} = \mathcal{E}_{0}dq = \mathcal{E}_{0}Idt = -\mathcal{E}_{i}Idt + RI^{2}dt = Id\Phi + RI^{2}dt$$

- Il lavoro della batteria viene quindi speso
 - Per modificare il campo magnetico:
 - ullet Come dissipazione Joule nella resistenza: RI^2dt
- ullet Nel seguito trascuriamo l'effetto Joule (Rpprox 0) $dW_{
 m b}=Id\Phi$
- ullet Supponiamo adesso di avere un sistema composto da più circuiti accoppiati (N)
 - La formula precedente viene generalizzata in

$$dW_{\rm b} = \sum_{k=1}^{N} I_k d\Phi_k$$

- ullet La corrente del circuito k è I_k
- ullet La variazione del flusso del circuito k è $d\Phi_k$

Energia Magnetica

$$dW_{\rm b} = \sum_{k=1}^{N} I_k d\Phi_k$$

- ullet Il lavoro dW_b fatto dalla batteria quando le correnti sono mantenute costanti, compensa le forze elettromotrici indotte generate da
 - Eventuali variazioni di flusso dovute a campi magnetici esterni
 - Eventuali variazioni di flusso dovute a spostamenti infinitesimi dei circuiti
- ullet Deriviamo una formula che esprima il lavoro $W_{
 m ext}$ necessario per costruire un sistema composto da
 - N circuiti magnetici
 - ullet Nel circuito k scorre la corrente FINALE I_k
 - ullet Il circuito k è caratterizzato da un flusso FINALE Φ_k
- ullet Durante la costruzione del sistema un agente esterno compie il lavoro $W_{
 m ext}$
 - ullet A esempio posizionando circuiti nei quali circolano correnti I_k
 - Ancora una volta devono compensare le forze elettromotrici che si manifestano in seguito alle variazioni di flusso
- ullet Il lavoro $W_{
 m ext}$ speso per costruire il sistema costituisce l'energia $U_{
 m M}$ immagazzinata nel sistema magnetico: $W_{
 m ext}=U_{
 m M}$

Energia Magnetica

- ullet Calcoliamo l'energia magnetica $U_{
 m M}$ immagazzinata in un sistema descritto da N correnti I_k e N flussi Φ_k
 - L'energia è indipendente dal particolare modo con il quale si raggiunge la condizione finale
 - ullet Partiamo dalla geometria finale, e passiamo dalla condizione iniziale (correnti nulle) alla condizione finale in cui le correnti sono I_k
- Scegliamo di farlo facendo cambiare tutte le correnti in modo proporzionale
 - In un dato istante tutte le correnti e tutti i flussi sono pari ad una frazione del loro valore finale: $I_k(\alpha)=\alpha I_k \qquad d\Phi_k(\alpha)=\Phi_k d\alpha$

$$dU_{\mathrm{M}} = \sum_{k=1}^{N} \alpha I_k d\Phi_k = \sum_{k=1}^{N} \alpha I_k \Phi_k d\alpha$$

$$U_{\mathrm{M}} = \int_0^1 \sum_{k=1}^{N} \alpha I_k \Phi_k d\alpha = \sum_{k=1}^{N} I_k \Phi_k \int_0^1 \alpha d\alpha$$

$$U_{\mathrm{M}} = \frac{1}{2} \sum_{k=1}^{N} I_k \Phi_k$$

- La relazione trovata è generale
- Vale anche in presenza di materiali magnetici purché lineari
- ullet Osserviamo infine che $dW_{
 m h}=2dU_{
 m M}$
 - Il lavoro fatto dalla batteria per mantenere costanti le correnti per variazioni $d\Phi_k$ è il doppio del lavoro necessario per costruire il sistema

Energia potenziale magnetica

- ullet L'energia magnetica $U_{
 m M}$ che abbiamo trattato finora è il lavoro che un agente esterno ha fatto per costruire un sistema magnetico
 - È anche l'energia immagazzinata nel campo
 - Tuttavia non è un'energia potenziale da cui si possono derivare le forze
 - ullet In particolare se $U_{
 m M}$ è una funzione che dipende dalle posizioni dei circuiti magnetici

 \bullet Non risulta vero çhe $U_{\rm M}=U_{\rm M}({\bf r}_{\!_1},{\bf r}_{\!_2})$

$$\mathbf{F}_{\!_{1}} = -\mathbf{\nabla}_{\!_{1}}\mathbf{\nabla}_{\!_{1}}(\mathbf{r}_{\!_{1}},\mathbf{r}_{\!_{2}}) \qquad \mathbf{F}_{\!_{2}} = -\mathbf{\nabla}_{\!_{2}}\mathbf{\nabla}_{\!_{1}}(\mathbf{r}_{\!_{1}},\mathbf{r}_{\!_{2}})$$

- ullet Supponiamo di spostare la spira 2 di $d{f r}_2$ mantenendo costanti le correnti
 - ullet Sulla spira 2 agisce la forza ${
 m F_2}$ che compie un lavoro $dW={
 m F_{e2}}\cdot d{
 m r_2}=-{
 m F_{m2}}\cdot d{
 m r_2}$
 - ullet Laullet batteria compie un lavoro $dW_{
 m b}ullet$ per mantenere costanti le correnti

• La batteria comple un lavoro
$$a\,W_{\rm b}$$
 per mantenere costanti le correnti • L'energia magnetica del sistema varia di una quantità $d\,U_{\rm M}$ • Il bilancio energetico è $d\,W + d\,W_{\rm b} = d\,U_{\rm M}$ $d\,W = d\,U_{\rm M} - d\,W_{\rm b} = -d\,U_{\rm M} \equiv d\,V_{\rm M}$ • In definitiva Energia potenziale magnetica

In definitiva

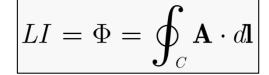
$$-\mathbf{F}_{\mathrm{m2}} \cdot d\mathbf{r}_{2} = \mathbf{F}_{\mathrm{e2}} \cdot d\mathbf{r}_{2} = dV_{\mathrm{M}} \qquad \mathbf{F}_{\mathrm{m}} = -\mathbf{\nabla} V_{\mathrm{M}} \qquad V_{\mathrm{M}} = -U_{\mathrm{M}}$$

ullet Abbiamo espresso l'energia immagazzinata in una spira di induttanza L nella quale circola una corrente I come

$$U_{_{
m M}}=rac{1}{2}LI^2$$

- Troviamo adesso un'espressione che esprima l'energia direttamente in funzione del campo magnetico B
- ullet Iniziamo ancora dall'espressione del flusso $\Phi=LI$
 - Dalla definizione di flusso

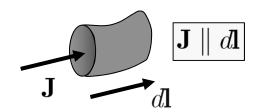
$$\Phi = \int_{S} \mathbf{B} \cdot d\mathbf{a} = \int_{S} (\mathbf{\nabla} \times \mathbf{A}) \cdot d\mathbf{a} = \oint_{C} \mathbf{A} \cdot d\mathbf{l} \qquad LI = \Phi = \oint_{C} \mathbf{A} \cdot d\mathbf{l}$$



• Introduciamo nell'espressione dell'energia

$$U_{\mathrm{M}} = \frac{1}{2} LII = \frac{1}{2} I \oint_{C} \mathbf{A} \cdot d\mathbf{I}$$

ullet Consideriamo adesso un tratto del circuito C



$$Id\mathbf{l} = (\mathbf{J} \cdot d\mathbf{a})d\mathbf{l} = \mathbf{J}dadl \qquad \longrightarrow \qquad U_{\mathrm{M}} = \frac{1}{2} \oint_{C} \mathbf{A} \cdot \mathbf{J}dadl$$

$$U_{\mathrm{M}} = \frac{1}{2} \oint_{C} \mathbf{A} \cdot \mathbf{J} da dl$$

- ullet Osserviamo che dadl=dV
 - ullet Se da è una sezione costante la circuitazione diventa un integrale di volume
 - Se la sezione del circuito non è infinitesima si può ripetere il ragionamento considerando $I={\bf J}\cdot d{\bf a} \to I=\int_A {\bf J}\cdot d{\bf a}$
- In entrambi i casi otteniamo

$$U_{\rm M} = \frac{1}{2} \int_{V} \mathbf{A} \cdot \mathbf{J} dV$$

- ullet L'integrale è esteso a tutto il volume del circuito $(J \neq 0)$
- Si può generalizzare estendendo a tutto lo spazio
- Ricaviamo un'altra espressione importante
 - ullet Esprimiamo J in funzione di B
 - Usiamo l'equazione di Maxwell

$$ullet$$
 Inseriamo nell'espressione dell'energia $U_{
m M}$

$$U_{_{ ext{M}}} = rac{1}{2\mu_{_{0}}} \int_{V} \mathbf{A} \cdot \left(\mathbf{\nabla} \times \mathbf{B} \right) dV$$

 $\nabla \times \mathbf{B} = \mu_0 \mathbf{J}$

$$U_{\rm M}=\frac{1}{2\mu_{\rm 0}}\int_{V}{\bf A}\cdot\left({\bf \nabla}\times{\bf B}\right)dV$$
 • Utilizziamo la relazione (diapositiva 55)

$$\mathbf{\nabla} \cdot (\mathbf{A} \times \mathbf{B}) = \mathbf{B} \cdot (\mathbf{\nabla} \times \mathbf{A}) (\mathbf{A} \cdot (\mathbf{\nabla} \times \mathbf{B}))$$

$$U_{\mathrm{M}} = \frac{1}{2\mu_{0}} \int_{V} \mathbf{B} \cdot \left(\mathbf{\nabla} \times \mathbf{A} \right) dV - \frac{1}{2\mu_{0}} \int_{V} \mathbf{\nabla} \cdot \left(\mathbf{A} \times \mathbf{B} \right) dV$$

Nel secondo integrale utilizziamo il Teorema della divergenza

$$\int_{V} \mathbf{\nabla} \cdot (\mathbf{A} \times \mathbf{B}) dV = \oint_{S} (\mathbf{A} \times \mathbf{B}) \cdot d\mathbf{a}$$

- L'integrale è esteso a tutto lo spazio
- ullet La superficie S può essere molto distante dal sistema
 - I campi A e B vanno a zero a grandi distanze pertanto l'integrale è nullo
- In definitiva otteniamo

$$U_{\mathrm{M}} = \frac{1}{2\mu_{0}} \int_{V} \mathbf{B} \cdot \left(\mathbf{\nabla} \times \mathbf{A} \right) dV = \frac{1}{2\mu_{0}} \int_{V} \mathbf{B} \cdot \mathbf{B} dV \qquad U_{\mathrm{M}} = \frac{1}{2\mu_{0}} \int_{V} B^{2} dV$$

• Interpretiamo il risultato appena trovato

$$U_{\rm M} = \frac{1}{2\mu_0} \int_V B^2 dV$$

ullet Al campo magnetico ${
m B}$ è associata una densità di energia magnetica ho_M

$$\rho_{\scriptscriptstyle M} = \frac{1}{2\mu_{\scriptscriptstyle 0}} B^2$$

- L'energia totale è l'integrale di volume della densità di energia
- È interessante notare la stretta analogia con il caso elettrostatico

$$ho_E = rac{arepsilon_0}{2} E^2 \qquad W_E = rac{arepsilon_0}{2} \int_V E^2 dV$$

- Sottolineiamo ancora una volta che non è stato fatto lavoro contro la forza magnetica
 - Il lavoro della forza magnetica è nullo
 - ullet L'energia immagazzinata nel campo magnetico B deriva dal lavoro fatto contro la forza elettromotrice indotta che si oppone alle variazioni di flusso

Energia elettrica e magnetica

大大大

• Per finire interpretiamo anche un importante risultato intermedio (diap. 276)

$$U_{\mathrm{M}} = rac{1}{2} \int_{V} \mathbf{A} \cdot \mathbf{J} dV$$
 $V_{\mathrm{M}} = -rac{1}{2} \int_{V} \mathbf{A} \cdot \mathbf{J} dV$

- La seconda relazione è importante perché esprime l'energia potenziale magnetica in funzione del potenziale vettore
- E analoga alla corrispondente relazione elettrostatica che esprime l'energia potenziale elettrica in funzione del potenziale

$$V_{\mathrm{E}} = \frac{1}{2} \int_{V} \phi \rho dV \qquad V_{\mathrm{EM}} = V_{\mathrm{E}} + V_{\mathrm{M}} = \frac{1}{2} \int_{V} \phi \rho dV - \frac{1}{2} \int_{V} \mathbf{J} \cdot \mathbf{A} dV$$

• I potenziali sono un quadrivettore

$$A^{\mu} = (\phi \ / \ c, \quad A_{\scriptscriptstyle \! x}, \quad A_{\scriptscriptstyle \! y}, \quad A_{\scriptscriptstyle \! z})$$

ullet Anche le densità di carica e corrente $J^{\mu}=(c
ho,\ J_{x},\ J_{y},\ J_{z})$

$$J^{\mu} = (c\rho, J_x, J_y, J_z)$$

• La densità di energia potenziale di un campo elettromagnetico in interazione con particelle cariche può essere espresso in modo covariante

$$V_{\mathrm{EM}} = V_{\mathrm{E}} + V_{\mathrm{M}} = \int_{V} \left(\frac{1}{2} \rho \phi - \frac{1}{2} \mathbf{J} \cdot \mathbf{A} \right) dV = \frac{1}{2} \int J^{\mu} A_{\mu} dV$$

• Questa è la forma dell'interazione elettromagnetica nella Lagrangiana

Relazione fra auto e mutua induttanza

ullet Specializziamo al caso di circuiti accoppiati nei quali il flusso del circuito k è dovuto alle correnti di tutti i circuiti

$$\Phi_k = \sum_{l=1}^N rac{\partial \Phi_k}{\partial I_l} I_l = \sum_{l=1}^N M_{kl} I_l \qquad \qquad M_{kk} = L_k$$

Sostituendo nella formula dell'energia

$$U_{
m M} = rac{1}{2} \sum_{k,l=1}^{N} M_{kl} I_{k} I_{l}$$

ullet Troviamo adesso una relazione fra $L_1,\,L_2$ e $M_{12}=M$ nel caso di due

circuiti accoppiati
$$(n=2,\,M_{12}=M_{21}=M)$$

$$U_{\rm M}=\frac{1}{2}L_{1}I_{1}^{2}+MI_{1}I_{2}+\frac{1}{2}L_{2}I_{2}^{2}$$

- ullet Il termine MI_1I_2 può essere positivo o negativo
- Gli altri due termini sono sempre positivi
- ullet $U_{
 m M}$ è positiva o nulla per qualunque valore di I_1 o I_2

$$\bullet$$
 Posto $\,x=rac{I_1}{I_2}\,\,$ l'energia diventa $\,U_{\mathrm{M}}=rac{1}{2}I_2^2\left(L_{\!\scriptscriptstyle 1}x^2+2Mx+L_{\!\scriptscriptstyle 2}\right)$

Relazione fra auto e mutua induttanza

Deve essere

$$f = L_1 x^2 + 2Mx + L_2 \ge 0$$

• Troviamo il minimo

$$\frac{d}{dx}\big(L_1x^2+2Mx+L_2\big)=2L_1x+2M=0 \qquad \qquad x=-\frac{M}{L_1}$$

$$\frac{d^2}{dx^2}\big(L_1x^2+2Mx+L_2\big)\bigg|_{x=-\frac{M}{L}}=2L_1>0 \quad \text{è un minimo}$$

Al minimo abbiamo

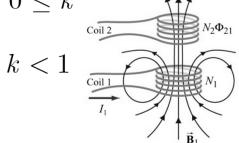
$$f = L_1 \frac{M^2}{L_1^2} - 2M \frac{M}{L_1} + L_2 = -\frac{M^2}{L_1} + L_2 \ge 0 \qquad L_1 L_2 \ge M^2$$

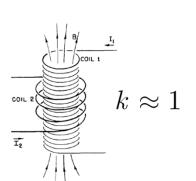
• Concludiamo che la mutua induttanza è limitata superiormente

$$M \leq \sqrt{L_1 L_2}$$

$$0 \le k$$

• Il valore k=1 si ha quando tutte le linee di campo della spira 1 attraversano anche la spira 1

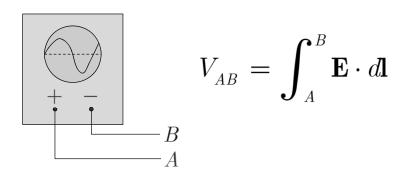


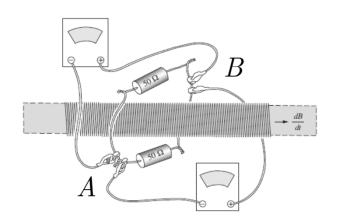


- In elettrodinamica il potenziale elettrico non è più univoco
 - In elettrostatico la differenza di potenziale era indipendente dal cammino

$$\nabla \times \mathbf{E} = 0 \quad \Longrightarrow \quad \oint \mathbf{E} \cdot d\mathbf{l} = 0 \quad \Longrightarrow \quad \phi(\mathbf{r}) = \phi(\mathbf{r}_0) + \int_{\mathbf{r}_0}^{\mathbf{r}} \mathbf{E} \cdot d\mathbf{l}$$

- ullet In elettrodinamica il rotore di ${f E}$ non è più nullo
 - La differenza di potenziale adesso dipende dal cammino
- Cerchiamo di capire meglio con un esempio
 - a) preliminarmente una definizione
 - \bullet Uno strumento di misura (ad esempio un oscilloscopio) misura un segnale proporzionale all'integrale del campo elettrico esteso da ${\bf A}$ a ${\bf B}$





ullet L'aspetto critico è che in questo caso $oldsymbol{
abla} imes oldsymbol{E} = -rac{\partial \mathbf{B}}{\partial t}$

$$\oint_{C} \mathbf{E} \cdot d\mathbf{l} = -\frac{d}{dt} \int_{S} \mathbf{B} \cdot d\mathbf{a} = -\frac{d\Phi}{dt}$$

• I due strumenti misurano

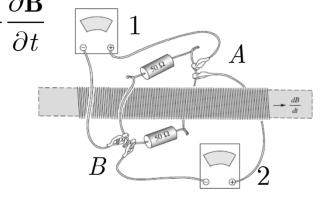
•
$$V_1 = \int_A^B {f E} \cdot d{f l}$$
 cammino ${f \Gamma}_1$

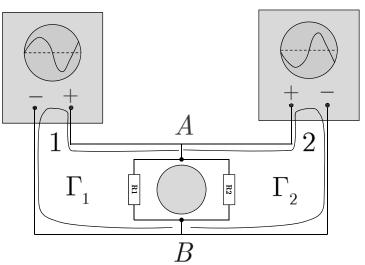
•
$$V_2 = \int_A^B \mathbf{E} \cdot d\mathbf{l}$$
 cammino Γ_2

- ullet Nel caso statico $V_1=\ V_2\ V_1-\ V_2=0$
 - Gli integrali sono indipendenti dal cammino
- Nel caso elettrodinamico abbiamo

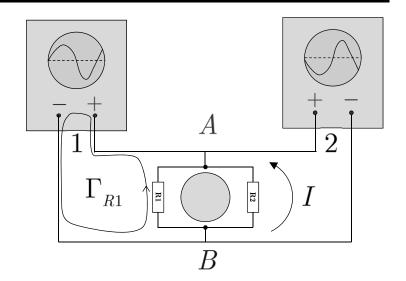
$$V_1 - V_2 = \int_{A-\Gamma_1}^B \mathbf{E} \cdot d\mathbf{l} - \int_{A-\Gamma_2}^B \mathbf{E} \cdot d\mathbf{l}$$

$$= \int_{A-\Gamma_1}^{B} \mathbf{E} \cdot d\mathbf{l} + \int_{B-\Gamma_2}^{A} \mathbf{E} \cdot d\mathbf{l} = \oint_{\Gamma_1-\Gamma_2} \mathbf{E} \cdot d\mathbf{l} = -\frac{d\Phi}{dt}$$





- \bullet Osserviamo che le differenze di potenziale ai capi delle resistenze R_1 e R_2 sono direttamente riconducibili a V_1 e ${\rm V}_2$
 - ullet Infatti, la circuitazione lungo Γ_{R_1} è nulla
 - ullet Otteniamo $V_{
 m 1}=V_{
 m R1}$ dove $V_{
 m R1}$ è misurata con terminale positivo ${
 m A}$
 - ullet Analogamente $V_2=V_{
 m R2}$
- ullet Infine, nella spira composta dalle due resistenze è indotta una forza elettromotrice $\mathcal E$ e scorre una corrente I



$$\mathcal{E} = -\frac{d\Phi}{dt} \qquad \qquad I = \frac{\mathcal{E}}{R_1 + R_2} = -\frac{1}{R_1 + R_2} \frac{d\Phi}{dt}$$

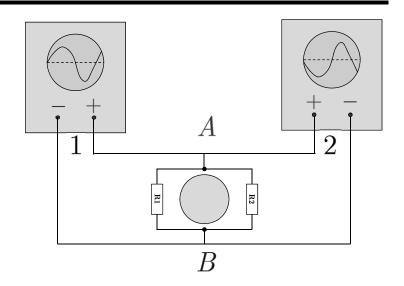
• Da cui infine

$$V_{R1} = \mathcal{E}\frac{R_1}{R_1 + R_2} = -\frac{d\Phi}{dt}\frac{R_1}{R_1 + R_2}$$

$$V_{\rm R2} = -\mathcal{E}\frac{R_{\rm 2}}{R_{\rm 1}+R_{\rm 2}} = +\frac{d\Phi}{dt}\frac{R_{\rm 2}}{R_{\rm 1}+R_{\rm 2}}$$

$$V_{R1} = \mathcal{E}\frac{R_1}{R_1 + R_2} = -\frac{d\Phi}{dt}\frac{R_1}{R_1 + R_2}$$

$$V_{R2} = -\mathcal{E}\frac{R_2}{R_1 + R_2} = +\frac{d\Phi}{dt}\frac{R_2}{R_1 + R_2}$$



ullet Specializziamo il risultato al caso $R_1=R_2$

$$V_{R1} = -\frac{1}{2} \frac{d\Phi}{dt}$$
 $V_{R2} = +\frac{1}{2} \frac{d\Phi}{dt}$ $V_{R1} = -V_{R2}$

• I due strumenti misurano tensioni di segno opposto!

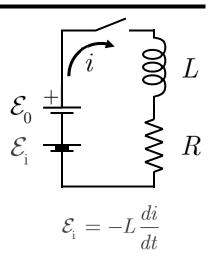
Induttanza come elemento di circuito

- Torniamo al circuito con il solenoide e la resistenza
 - Utilizzando la legge di Faraday avevamo scritto l'equazione del circuito

$$\mathcal{E}_0 - L \frac{di}{dt} = Ri$$

• L'equazione può essere riscritta come

$$\mathcal{E}_0 = L\frac{di}{dt} + Ri$$

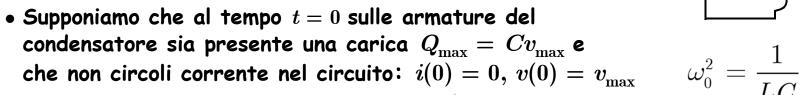


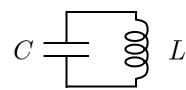
ullet In relazione al circuito l'equazione può essere interpretata dicendo che l'induttanza è un elemento di circuito con una data relazione $V\!-\!I$

$$L \quad v \not \downarrow \beta \downarrow i \quad v = L \frac{di}{dt} \qquad C \quad v \not \downarrow \frac{1}{\Box} \downarrow i \quad i = C \frac{dv}{dt}$$

- Ricordiamo l'analoga interpretazione del condensatore
- Si può applicare la teoria dei circuiti
 - Leggi di Kirchhoff, maglie, nodi

- Consideriamo il circuito in figura
 - Per il momento supponiamo che la resistenza dei conduttori sia trascurabile





$$\omega_0^2 = \frac{1}{LC}$$

- La tensione ai capi dei due componenti è la stessa
- La corrente che circola nei due componenti ha lo stesso valore ma segno opposto $i_L=-i_C=i$ (ricordare la convenzione nella diapositiva precedente)
 - ullet Dalle relazioni $V\!-\!I$ otteniamo l'equazione del circuito

$$i_{C} = C \frac{dv}{dt}$$
 $v = L \frac{di_{L}}{dt}$ $i_{C} = LC \frac{d^{2}i_{L}}{dt^{2}}$ $\frac{d^{2}i}{dt^{2}} = -\omega_{0}^{2}i$

$$\frac{d^2i}{dt^2} = -\omega_0^2 i$$

• La soluzione è immediata

$$i = A\sin(\omega_0 t + \phi)$$

 $i=A\sinig(\omega_0 t+\phiig)$ La condizione iniziale sulla corrente fissa la fase ϕ

$$i(0) = A\sin\phi = 0$$
$$\phi = 0$$

$$\bullet$$
 Calcoliamo la tensione
$$v = L \frac{di}{dt} = L \omega_0 A \cos \omega_0 t$$

$$v\!\left(0\right) = v_{\text{max}} = L\omega_{0}A \qquad A = \frac{v_{\text{max}}}{L\omega_{0}} = \sqrt{\frac{C}{L}}v_{\text{max}} = \frac{1}{\sqrt{LC}}Cv_{\text{max}} = Q_{\text{max}}\omega_{0} \equiv i_{\text{max}}$$

• Interpretiamo il risultato trovato

$$\begin{aligned} v &= v_{\text{max}} \cos \omega_0 t \\ i &= i_{\text{max}} \sin \omega_0 t \end{aligned}$$

• C'è un campo elettrico nel condensatore

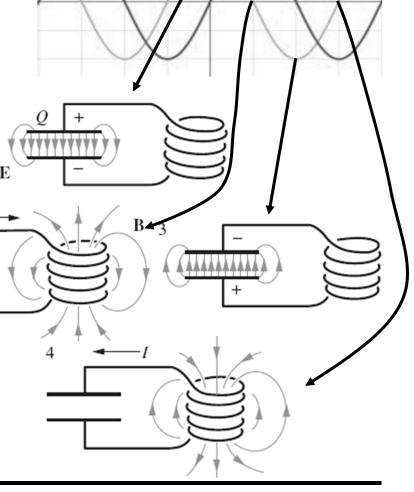
• Non c'è campo magnetico (i=0)

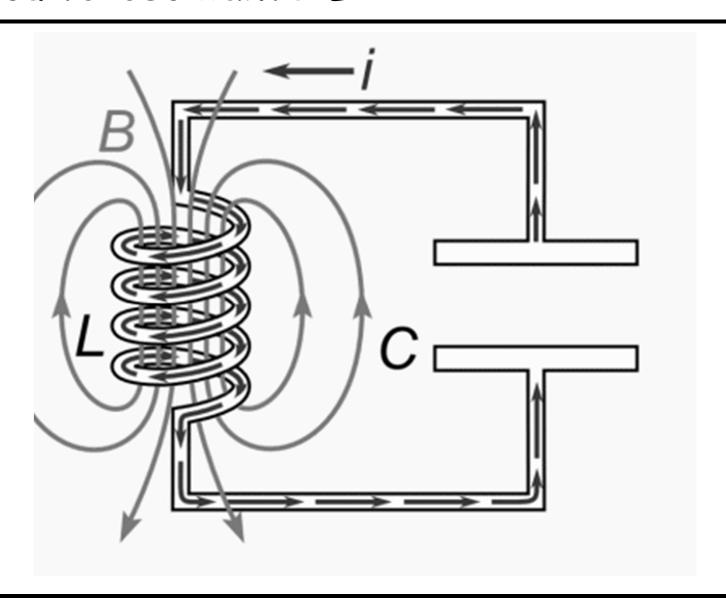
ullet Per $\omega_0 t = \pi/2$ il condensatore è scarico

• Non c'è più campo elettrico

• Il campo magnetico è massimo

- ullet Per $\omega_0 t = \pi$ la carica sul condensatore è di nuovo massima
 - Il campo E ha cambiato segno
 - \bullet B = 0
- ullet Per $\omega_0 t = 3\pi/2$ il condensatore è scarico
 - Il campo B ha cambiato segno
 - $\bullet E = 0$





$$v = v_{\max} \cos \omega_0 t$$
 $i = i_{\max} \sin \omega_0 t = \sqrt{\frac{C}{L}} v_{\max} \sin \omega_0 t$

- ullet L'oscillazione del circuito LC consiste pertanto nella continua trasformazione dell'energia del sistema
 - L'energia del campo elettrico

$$U_{\rm E} = \frac{1}{2}Cv^2 = \frac{1}{2}Cv_{\rm max}^2\cos^2\omega_0 t$$

• L'energia del campo magnetico

$$\begin{split} U_{\mathrm{M}} &= \frac{1}{2}Li^2 = \frac{1}{2}L\bigg(\sqrt{\frac{C}{L}}v_{\mathrm{max}}\bigg)^2\sin^2\omega_0 t \ = \frac{1}{2}L\frac{C}{L}v_{\mathrm{max}}^2\sin^2\omega_0 t \\ U_{M} &= \frac{1}{2}Cv_{\mathrm{max}}^2\sin^2\omega_0 t \end{split}$$

Naturalmente l'energia totale è costante

$$U_{\rm M} + U_{\rm E} = \frac{1}{2} C v_{\rm max}^2 \left(\sin^2 \omega_0 t + \cos^2 \omega_0 t \right) = \frac{1}{2} C v_{\rm max}^2$$

- L'oscillazione che abbiamo osservato si basa sulla presenza di carica elettrica
 - Il campo elettrico nel condensatore e di natura quasi-statica (elettrostatica)
 - È generato dalle cariche elettriche (sorgenti)

$$\mathbf{\nabla} \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0}$$

- $\varepsilon_{\scriptscriptstyle 0}$ Il campo magnetico è di natura quasi-statica (magnetostatica)
 - È generato dalla corrente (sorgente, cariche in movimento)

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J}$$

- In linea di principio il campo elettrico potrebbe $\mathbf{
 abla} imes \mathbf{E} = -rac{\partial \mathbf{B}}{\partial t}$ essere generato per induzione

 - ullet Stiamo assumendo che le variazioni di ${f B}$ non sono importanti rispetto a ho
- Per quello che abbiamo visto fino ad ora il campo magnetico può essere generato solo da una corrente
 - Sembra che non ci sia modo di prescindere dalla carica elettrica
- In realtà le modifiche all'ultima equazione di Maxwell permetteranno un campo magnetico generato dalle variazioni del campo elettrico
 - ullet Si possono generare campi senza sorgenti (ho o J)
 - Sono le onde elettromagnetiche

- Introduciamo adesso una resistenza nel circuito
 - ullet Le relazioni $V\!-I$ per i tre componenti sono

$$i = -C \frac{dV_C}{dt}$$
 $V_L = L \frac{di}{dt}$ $V_R = Ri$

$$V_{L} = L \frac{di}{dt}$$

$$V_R = Ri$$

• Sostituiamo la prima equazione nelle altre due

$$V_{\scriptscriptstyle L} = L \frac{d}{dt} \bigg(- C \frac{d V_{\scriptscriptstyle C}}{dt} \bigg) = - L C \frac{d^2 V_{\scriptscriptstyle C}}{dt^2} \qquad V_{\scriptscriptstyle R} = R \bigg(- C \frac{d V_{\scriptscriptstyle C}}{dt} \bigg) = - R C \frac{d V_{\scriptscriptstyle C}}{dt}$$

• Combinando le relazioni

$$V_C = V_L + V_R$$

$$V_{C} = V_{L} + V_{R} \qquad \longrightarrow \qquad V_{C} = -LC \frac{d^{2}V_{C}}{dt^{2}} - RC \frac{dV_{C}}{dt}$$

$$LC\frac{d^2V_C}{dt^2} + RC\frac{dV_C}{dt} + V_C = 0$$

$$LC\frac{d^2V_C}{dt^2} + RC\frac{dV_C}{dt} + V_C = 0 \qquad \qquad \frac{d^2V_C}{dt^2} + \frac{R}{L}\frac{dV_C}{dt} + \frac{1}{LC}V_C = 0$$

- Abbiamo ottenuto l'equazione del circuito
 - Un'equazione differenziale del secondo ordine a coefficienti costanti

$$\frac{d^2V_C}{dt^2} + \frac{R}{L}\frac{dV_C}{dt} + \frac{1}{LC}V_C = 0$$

• Si può dimostrare che una soluzione dell'equazione è della forma

$$V_{C}(t) = Ae^{\alpha t}\cos(\omega t)$$

• Calcoliamo le derivate

$$\begin{split} \frac{dV_{C}}{dt} &= Ae^{-\alpha t} \left(-\alpha \cos \omega t - \omega \sin \omega t \right) \\ \frac{d^{2}V_{C}}{dt^{2}} &= Ae^{-\alpha t} \left[\left(\alpha^{2} - \omega^{2} \right) \cos \omega t + 2\alpha \omega \sin \omega t \right] \end{split}$$

- Introduciamo nell'equazione
 - ullet Il fattore $Ae^{-lpha t}$ è comune a tutti i termini

$$Ae^{-\alpha t}\left[\left(\alpha^2-\omega^2\right)\cos\omega t+2\alpha\omega\sin\omega t-\frac{R}{L}\left(\alpha\cos\omega t+\omega\sin\omega t\right)+\frac{1}{LC}\cos\omega t\right]=0$$

• L'equazione può essere soddisfatta solo se i coefficienti di $\sin\!\omega t$ e $\cos\!\omega t$ sono separatamente nulli

$$Ae^{-\alpha t}\left[\left(\alpha^2 - \omega^2\right)\cos\omega t + 2\alpha\omega\sin\omega t - \frac{R}{L}\left(\alpha\cos\omega t + \omega\sin\omega t\right) + \frac{1}{LC}\cos\omega t\right] = 0$$

• Otteniamo pertanto

$$2\alpha\omega - \frac{R}{L}\omega = 0$$

$$\alpha^2 - \omega^2 - \frac{R}{L}\alpha + \frac{1}{LC} = 0$$

$$\omega^2 = \frac{R^2}{4L^2} - \omega^2 - \frac{R^2}{2L^2} + \frac{1}{LC} = 0$$

$$\omega^2 = \frac{1}{LC} - \frac{R^2}{4L^2}$$

- ullet Assumiamo che la soluzione sia oscillante, vale a dire ω reale
 - Abbiamo pertanto la condizione

$$\frac{1}{LC} > \frac{R^2}{4L^2}$$

- ullet Osserviamo infine che nel caso R=0 avevamo definito $\omega_0^2=rac{1}{LC}$
- Pertanto la presenza della resistenza modifica la frequenza dell'oscillazione

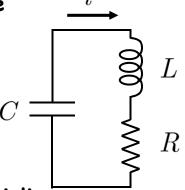
$$\omega^2 = \omega_0^2 - \frac{R^2}{4L^2}$$

• Nel caso generale bisogna considerare anche un'altra soluzione

$$V_{C}(t) = Be^{\alpha t} \sin(\omega t)$$

• Le due soluzioni possono essere unificate introducendo una fase

$$V_{C}(t) = Ae^{\alpha t}\cos(\omega t + \phi)$$



- ullet Le costanti A e ϕ si determinano a tramite le condizioni iniziali
 - Non è particolarmente interessante
 - Qualitativamente la tensione oscilla con una ampiezza che diminuisce nel tempo

