Elettromagnetismo

Prof. Francesco Ragusa Università degli Studi di Milano

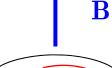
Lezione n. 30 - 13.04.2023

Legge di Lenz
Campo elettrico indotto
Applicazioni della legge di Faraday
Induttanza e mutua induttanza
Energia Magnetica

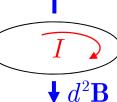
Anno Accademico 2022/2023

Legge di Lenz

- Il segno meno nella legge di Faraday non è solo il frutto di una convenzione
 - Ha un significato fisico molto importante che adesso approfondiamo 🕴 dB
- Consideriamo una spira in una regione con un campo magnetico con flusso Φ



- Supponiamo che ci sia una variazione del campo dB
 - Il flusso varia e viene indotta una forza elettromotrice
 - La forza elettromotrice genera una corrente che a sua volta genera un ulteriore campo magnetico



- Questo ulteriore campo magnetico contribuisce anch'esso al flusso
- Pertanto il flusso varia ancora e genera un'altra forza elettromotrice
- La fisica del fenomeno si sintetizza dicendo che non può succedere che la seconda forza elettromotrice abbia lo stesso segno della prima
 - Si innescherebbe un processo a valanga che violerebbe la conservazione dell'energia
 - Il segno meno della legge di Faraday impedisce che questo succeda

$$dB > 0 \implies d\Phi > 0 \implies \mathcal{E} < 0 \implies I < 0 \implies d^2B < 0$$

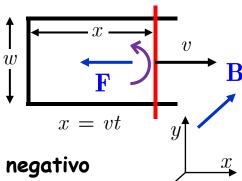
Legge di Lenz

Il segno della forza elettromotrice indotta è tale che la corrente indotta genera un campo magnetico che si oppone alla variazione di flusso

Legge di Lenz

- Riprendiamo in considerazione il sistema della barretta che abbiamo analizzato nella diapositiva 230 e seguenti
 - Ricordiamo che il campo magnetico "entra" nel piano
 - Seguendo le convenzioni il flusso è negativo e vale

$$\Phi = \int_A \mathbf{B} \cdot d\mathbf{a} = -Bwvt$$



- Con il passare del tempo il flusso diventa sempre più negativo
- Per la legge di Lenz la forza elettromotrice indotta deve generare un flusso aggiuntivo che si oppone alla variazione di flusso
 - Un flusso positivo dovuto ad una corrente indotta che circola in senso antiorario
- ullet Una corrente diretta dal basso verso l'alto, nel senso positivo delle y, nella barretta subisce una forza di Lorentz F diretta nel senso negativo delle x
 - Si oppone alla velocità v e tende a rallentare la barretta
- ullet Se il segno della legge di Lenz fosse opposto la forza F accelererebbe la barretta
 - Una volta messa in moto la velocità aumenterebbe indefinitamente
 - La conservazione dell'energia sarebbe violata

Il campo elettrico indotto

- Quando il campo magnetico varia nel tempo viene indotto un campo elettrico
 - Il campo elettrico indotto obbedisce all'equazione di Maxwell

$$\mathbf{\nabla} \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

- Osserviamo che questa relazione vale anche se non ci sono cariche elettriche che generano il campo
- Se non ci sono cariche elettriche allora si ha anche

$$\nabla \cdot \mathbf{E} = 0$$

- Ci troviamo pertanto in presenza di un campo con rotore e divergenza definiti
 - ullet Per il teorema di Helmholtz, assumendo che E o 0 per $r o \infty$ il campo ha una forma completamente definita
 - Osserviamo che obbedisce a equazioni formalmente identiche a quelle di un campo magnetico con la sostituzione

$${f B}
ightarrow {f E} \qquad \mu_0 {f J}
ightarrow - rac{\partial {f B}}{\partial t}$$

• In alcuni casi possiamo trovare il campo elettrico indotto con i metodi già utilizzati per trovare il campo magnetico (simmetria e legge di Ampère)

Il campo elettrico indotto

 Consideriamo ad esempio il caso di una regione limitata dello spazio in cui sia presente un campo magnetico uniforme ma dipendente dal tempo

• Supponiamo che il campo sia presente solo all'interno della regione circolare (cilindrica) indicata in figura

• Ad esempio un lungo solenoide di raggio a

ullet Poiché $abla { hilde {
m E}} = 0$ le linee del campo ${
m E}$ sono chiuse come quelle di un campo magnetico

• Il problema ha simmetria cilindrica e quindi le linee di campo sono circonferenze concentriche all'asse del solenoide

Possiamo usare la "legge di Ampère"

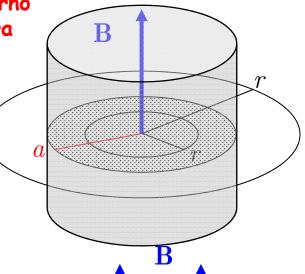
$$\oint_C \mathbf{E} \cdot d\mathbf{l} = "\mu_0 \int_S \mathbf{J} \cdot d\mathbf{a} " = \int_S -\frac{\partial \mathbf{B}}{\partial t} \cdot d\mathbf{a}$$

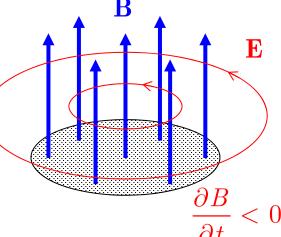
ullet Calcoliamo il campo ad un raggio r < a

$$E(r)2\pi r = -\pi r^2 \frac{\partial B}{\partial t} \qquad \mathbf{E}(r) = -\frac{r}{2} \frac{\partial B}{\partial t} \hat{\mathbf{e}}_{\phi}$$

$$\begin{array}{ll} \bullet \ \text{Per} \ r > a \\ E\left(r\right)2\pi r = -\pi a^2 \, \frac{\partial B}{\partial t} & \quad \mathbf{E}\left(r\right) = -\frac{a^2}{2r} \frac{\partial B}{\partial t} \hat{\mathbf{e}}_{\scriptscriptstyle \phi} \end{array}$$

$$\mathbf{E}(r) = -\frac{a^2}{2r} \frac{\partial B}{\partial t} \hat{\mathbf{e}}_{q}$$





Apparente paradosso: momento angolare

• Consideriamo ancora il sistema dell'esempio precedente

ullet Un solenoide di raggio a_{\star} un campo magnetico ${
m B}$

• Consideriamo adesso un anello di carica di raggio b

• L'anello ha una densità lineare di carica λ

- Supponiamo adesso che il solenoide venga "spento" e che il campo B ritorni a zero
 - Abbiamo visto che la variazione nel tempo di B genera un campo elettrico
- La forza su un elemento di carica $dq = \lambda dl$ è

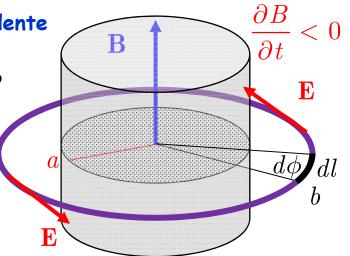
$$dF = dqE = \lambda b d\phi E$$

ullet Il momento della forza $\dot{f e}$ (verso l'alto per dB < 0)

$$d au = bdF = b\lambda bd\phi E$$
 $au = 2\pi b^2 \lambda E\left(b\right)$ $au = -\pi a^2 b\lambda \frac{\partial B}{\partial t}$

$$dL = \tau dt = -\pi a^2 b \lambda dB$$
 $\Delta L = -\pi a^2 b \lambda \int_B^0 dB = \pi a^2 b \lambda B$

- ullet L'anello comincia a ruotare; ha acquistato momento angolare ΔL
 - Da dove ha guadagnato momento angolare?
 - NB: fuori dal solenoide (molto lungo) B è sempre nullo

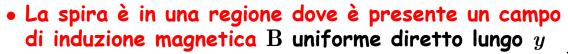


$$\mathbf{E}(r) = -\frac{a^2}{2r} \frac{\partial B}{\partial t} \hat{\mathbf{e}}_{\phi}$$

$$\tau = -\pi a^2 b \lambda \frac{\partial B}{\partial t}$$

Applicazione: Generatore di corrente AC

ullet Supponiamo di avere una spira quadrata di lato w parallela al piano x-z che può ruotare intorno all'asse z

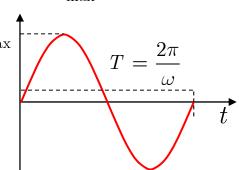


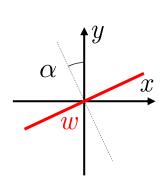
- Al tempo t la normale alla spira forma un angolo $\alpha(t) = \omega t$ con la direzione del campo magnetico
- Il flusso attraverso la spira è $\Phi(t) = Bw^2 \cos \alpha(t) = Bw^2 \cos \omega t$
- Poiché il flusso varia nel tempo, nella spira compare una forza elettromotrice indotta

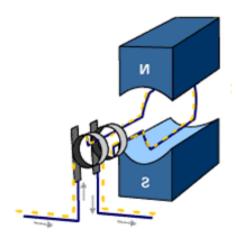
$$\mathcal{E} = -\frac{d\Phi}{dt} = Bw^2\omega\sin\omega t = \mathcal{E}_{\text{max}}\sin\omega t$$

• Se la spira è collegata ad una \mathcal{E}_{\max} resistenza R

$$P = \frac{\mathcal{E}^2}{R} = \frac{\mathcal{E}_{\text{max}}^2}{R} \sin^2 \omega t$$





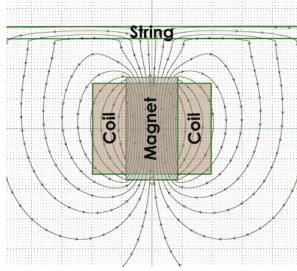


Applicazione: Pick-up chitarra elettrica

- La potenza dissipata nella resistenza è
- Per mantenere in rotazione la spira occorre fornire una potenza equivalente

$$P = \mathcal{E}I = \frac{\mathcal{E}_{\text{max}}^2}{R} \sin^2 \omega t$$

- Un'altra applicazione dell'induzione sono i trasduttori elettromeccanici
 - Trasformano vibrazioni meccaniche in impulsi elettrici
 - Microfono, pick-up chitarra elettrica
 - Le corde sono di materiale ferromagnetico
 - "Catturano" il campo di induzione magnetica (lo vedremo)
 - Deformano il campo del magnete permanente
 - Generano una variazione di flusso nella bobina



Auto-Induttanza

- ullet Consideriamo una spira percorsa da una corrente I
 - La spira genera un campo magnetico B
 - Per la legge di Biot e Savart, (vedi diapositiva 42)

$$\mathbf{B}(\mathbf{r}) = \frac{\mu_0}{4\pi} I \oint_C \frac{d\mathbf{l}_1 \times (\mathbf{r} - \mathbf{r}_1)}{\left|\mathbf{r} - \mathbf{r}_1\right|^3}$$

- Notiamo che il campo magnetico dipende linearmente dalla corrente
- Il flusso di B attraverso la spira è dato da

$$\Phi = \int_{S} \mathbf{B} \cdot d\mathbf{a}$$

dalla formula di Biot e Savart

$$\Phi = \int_S \mathbf{B} \cdot d\mathbf{a}$$
• Sostituiamo l'espressione di B data dalla formula di Biot e Savart
$$\Phi = \frac{\mu_0}{4\pi} I \int \left[\frac{d\mathbf{l}_1 \times (\mathbf{r} - \mathbf{r}_1)}{\left|\mathbf{r} - \mathbf{r}_1\right|^3} \right] \cdot d\mathbf{a}$$

- Di solito l'integrale è difficile da calcolare
 - Tuttavia dice una cosa semplice e importante
 - Il flusso è proporzionale alla corrente

$$L = \frac{\mu_0}{4\pi} \int \left[\frac{d\mathbf{l}_1 \times (\mathbf{r} - \mathbf{r}_1)}{\left|\mathbf{r} - \mathbf{r}_1\right|^3} \right] \cdot d\mathbf{a}$$

$$\Phi = LI$$
 •L'unità di misura è l'Henry

$$\Phi = LI$$

Auto-Induttanza

- La formula per l'auto-induttanza può essere messa in una forma più semplice
 - Partiamo dalla definizione di flusso

$$\Phi = \int_{S} \mathbf{B} \cdot d\mathbf{a}$$
 $\mathbf{B} = \mathbf{\nabla} \times \mathbf{A}$ $\Phi = \int_{S} (\mathbf{\nabla} \times \mathbf{A}) \cdot d\mathbf{a}$

• Utilizziamo il Teorema di Stokes

$$\Phi = \int_{S} (\mathbf{\nabla} \times \mathbf{A}) \cdot d\mathbf{a} = \oint_{C} \mathbf{A} \cdot d\mathbf{l}$$

• Utilizziamo l'espressione per il potenziale vettore (diapositiva 93)

$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} I \oint_C \frac{d\mathbf{l}'}{|\mathbf{r} - \mathbf{r}'|}$$

• Introducendo nell'espressione per il flusso

$$\Phi = \oint_C \mathbf{A} \cdot d\mathbf{l} = \frac{\mu_0}{4\pi} I \oint_C \oint_C \frac{d\mathbf{l} \cdot d\mathbf{l}'}{|\mathbf{r} - \mathbf{r}'|} \qquad L = \frac{\mu_0}{4\pi} \oint_C \oint_C \frac{d\mathbf{l} \cdot d\mathbf{l}'}{|\mathbf{r} - \mathbf{r}'|}$$

Formula di Neumann

- ullet L'espressione trovata per L è più semplice
 - È comunque un integrale complicato
 - Diverge per un filo con raggio tendente a zero
 - Serve un modello della ripartizione della corrente su un filo di raggio finito

Mutua induttanza

- Consideriamo adesso un sistema composto da due spire
 - La spira 1 del caso precedente
 - ullet Percorsa da una corrente I_1 genera un campo B_1
 - Una spira 2, posta in una posizione fissata rispetto alla spira 1
 - Naturalmente il campo magnetico ${f B}_1$ ha anche un flusso concatenato alla spira 2 ${f B}_1={f
 abla} imes{f A}_1$

$$\Phi_2 = \int_{S_2} \mathbf{B}_1 \cdot d\mathbf{a} = \int_{S_2} (\mathbf{\nabla} \times \mathbf{A}_1) \cdot d\mathbf{a}$$

• Ricordiamo la formula del potenziale vettore

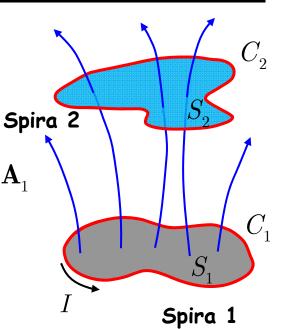
$$\mathbf{A}_{\scriptscriptstyle 1}ig(\mathbf{r}ig) = rac{\mu_{\scriptscriptstyle 0}}{4\pi} I_{\scriptscriptstyle 1} \! \oint_{\scriptscriptstyle C_{\scriptscriptstyle 1}} \! rac{d\mathbf{l}_{\scriptscriptstyle 1}}{\left|\mathbf{r}-\mathbf{r}_{\scriptscriptstyle 1}
ight|}$$

Usiamo ancora una volta il Teorema di Stokes

$$\Phi_{2} = \oint_{C_{2}} \mathbf{A}_{1} \cdot d\mathbf{l}_{2} = rac{\mu_{0}}{4\pi} I_{1} \oint_{C_{2}} \oint_{C_{1}} rac{d\mathbf{l}_{1} \cdot d\mathbf{l}_{2}}{\left|\mathbf{r}_{2} - \mathbf{r}_{1}
ight|}$$

ullet Il flusso nella spira 2 dipende dalla corrente I_1

$$\Phi_{\scriptscriptstyle 2} = M_{\scriptscriptstyle 21} I_{\scriptscriptstyle 1}$$



$$M_{21} = rac{\mu_0}{4\pi} \oint_{C_2} \oint_{C_1} rac{d\mathbf{l}_1 \cdot d\mathbf{l}_2}{\left|\mathbf{r}_2 - \mathbf{r}_1
ight|}$$

Formula di Neumann per la Mutua Induttanza

Mutua induttanza

ullet Se consideriamo adesso una corrente I_2 che circola nella spira 2 troviamo delle espressioni analoghe

$$\Phi_2 = L_2 I_2 \qquad \Phi_1 = M_{12} I_2 \qquad M_{12} = rac{\mu_0}{4\pi} \oint_{C_1} \oint_{C_2} rac{d \mathbf{l}_2 \cdot d \mathbf{l}_1}{\left| \mathbf{r}_1 - \mathbf{r}_2
ight|} = M_{21}$$

• Le relazioni trovate insieme alle precedenti ci permettono di scrivere il sistema di relazioni

$$\begin{array}{lll} \Phi_1 = M_{11}I_1 + M_{12}I_2 & L_1 \equiv M_{11} \\ \Phi_2 = M_{21}I_1 + M_{22}I_2 & L_2 \equiv M_{22} \end{array} \begin{array}{ll} \bullet \ L_1, L_2 & \text{Autoinduttanza} \\ \bullet \ M_{12}, M_{21} & \text{Mutua induttanza} \end{array}$$

- ullet L'uguaglianza $M_{12}=M_{21}$ esprime una simmetria non evidente a prima vista
 - ullet Il flusso che una corrente I_1 induce nella spira 2 è uguale al flusso che una corrente I_2 induce nella spira 1

$$rac{\Phi_{12}}{I_{2}} = rac{\Phi_{21}}{I_{1}}$$

- ullet Il flusso Φ_{ij} indica il flusso nella spira i dovuto alla corrente j
- ullet Le relazioni trovate possono essere estese ad un sistema di N spire

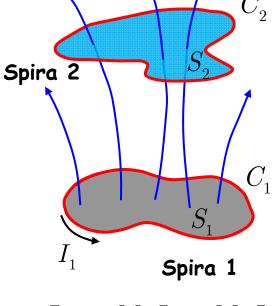
Forze elettromotrici indotte

- ullet Supponiamo adesso di variare la corrente I_1 che circola nella spira 1
 - Il flusso concatenato con la spira 2 varia
 - Appare una forza elettromotrice indotta

$$\mathcal{E}_{21} = -\frac{d\Phi_2}{dt} = -M_{21}\frac{dI_1}{dt}$$

- Abbiamo pertanto indotto una forza elettromotrice nella spira 2 agendo sulla spira 1
 - ullet La forza elettromotrice \mathcal{E}_{21} genera una corrente nella spira 2
 - Non ci sono collegamenti elettrici diretti
- ullet La variazione di corrente I_1 genera una variazione di flusso anche nella spira 1 stessa
 - Anche nella spira 1 compare una forza elettromotrice

$$\mathcal{E}_1 = -\frac{d\Phi_1}{dt} = -L\frac{dI_1}{dt}$$



$$\Phi_1 = M_{11}I_1 + M_{12}I_2$$

$$\Phi_2 = M_{21}I_1 + M_{22}I_2$$

- Può risultare difficile dedurre i versi delle correnti indotte
 - Spesso è più conveniente utilizzare la legge di Lenz

Esempio di calcolo mutua induttanza

- Consideriamo due solenoidi coassiali
 - ullet Solenoide 1 di raggio $a,\ n_1$ spire e lunghezza l_1
 - Solenoide 2 di raggio b, n_2 spire e lunghezza l_2
- Calcoliamo la mutua induttanza nell'ipotesi il solenoide più interno sia molto lungo
 - Il questa approssimazione il campo magnetico nel solenoide più interno è diretto lungo l'asse ed è uniforme

$$B = \mu_0 \frac{n_1}{l_1} I_1$$

una spira n_2 spire

 $\leftarrow l_2 \rightarrow$

• Il flusso concatenato con il solenoide esterno è

$$B\pi a^2$$

$$B\pi a^2$$
 $n_2 B\pi a^2$

Otteniamo infine

$$\Phi_2 = \mu_0 \frac{n_1 n_2}{l_1} \pi a^2 I_1 \qquad M_{21} = M_{12} = \mu_0 \frac{n_1 n_2}{l_1} \pi a^2$$

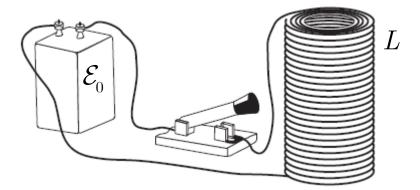
- Osserviamo che se avessimo fatto il calcolo inverso le cose sarebbero state molto più complicate
 - ullet Il solenoide l_2 non è lungo; il suo campo non è uniforme
 - ullet Il risultato del calcolo sarebbe lo stesso perché $M_{21}=M_{12}$

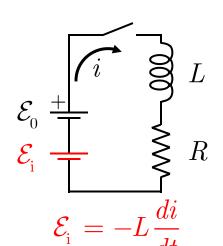
Circuiti con induttanze

- ullet Consideriamo un solenoide di induttanza L collegato ad una batteria con $\mathrm{fem}\ \mathcal{E}_0$
 - ullet Il conduttore dell'avvolgimento ha una resistenza complessiva R
 - Da un punto di vista elettrico il solenoide è schematizzato come una resistenza e un'induttanza in serie

- ullet La corrente nella resistenza provoca una caduta Ri
- La corrente nel solenoide genera un campo magnetico
 - ullet Il flusso $\Phi(t) = Li(t)$ concatenato varia
 - \bullet Compare una forza elettromotrice indotta \mathcal{E}_i che si oppone alla variazione di flusso
 - ullet La forza elettromotrice indotta genera una corrente che riduce i(t)
- In sintesi le equazioni sono

$$\mathcal{E}_{_{0}}+\mathcal{E}_{_{\mathrm{i}}}=Ri$$
 $\mathcal{E}_{_{0}}-Lrac{di}{dt}=Ri$



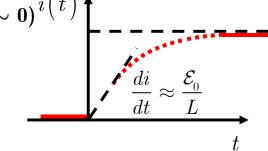


$$\frac{di}{dt} > 0 \qquad \mathcal{E}_{i} < 0$$

Circuiti con induttanze

- Prima di risolvere matematicamente il problema cerchiamo di capire la fisica
 - Prima della chiusura dell'interruttore, ovviamente, la corrente è nulla
 - Per tempi molto grandi il circuito avrà raggiunto una condizione stazionaria
 - Nel solenoide circolerà una corrente costante
 - ullet Non ci sono più forze elettromotrici indotte $(di/dt \sim 0)^{iig(tig)}$
 - Il solenoide genera un campo magnetico
 - La corrente è data da

$$i_{\infty} o rac{\mathcal{E}_0}{R}$$



- Subito dopo la chiusura la corrente deve essere circa zero
 - Se avesse una variazione discontinua la fem indotta sarebbe infinita
 - ullet La caduta di tensione sulla resistenza \dot{ullet} trascurabile $Ri\sim 0$

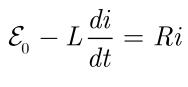
$$\mathcal{E}_{0} - L \frac{di}{dt} = \mathcal{E}_{0}$$

$$L \frac{di}{dt} \approx \mathcal{E}_{0} \qquad \frac{di}{dt} \approx \frac{\mathcal{E}_{0}}{L}$$

- ullet La \mathbf{fem} indotta ha modulo circa uguale a \mathcal{E}_0 e limita a zero la corrente
- L'induttanza limita la massima velocità di crescita della corrente

Circuiti con induttanze

• Veniamo adesso alla soluzione dell'equazione differenziale



• Facciamo la sostituzione

$$I=i-rac{\mathcal{E}_0}{R} \qquad rac{di}{dt}=rac{dI}{dt} \qquad \qquad \mathcal{E}_0-Lrac{dI}{dt}=RI+Rrac{\mathcal{E}_0}{R}$$

$$T = i - \frac{\mathcal{E}_0}{R}$$
 $\frac{di}{dt} = \frac{dI}{dt}$

$$\tau = \frac{L}{D}$$

$$rac{dI}{dt} = -rac{R}{L}I$$
 definiamo $au = rac{L}{R}$ otteniamo $rac{dI}{dt} = -rac{1}{ au}I$

• La soluzione per t>0 è

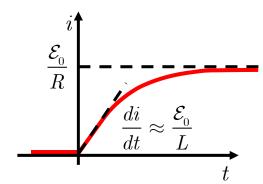
$$I(t) = Ae^{-t/\tau}$$

$$i(t) = \frac{\mathcal{E}_0}{R} + Ae^{-t/\tau}$$

• La condizione iniziale i(0) = 0 dà

$$A = -rac{\mathcal{E}_0}{R}$$

$$i(t) = \frac{\mathcal{E}_0}{R} (1 - e^{-t/\tau})$$



Trasformatore

- ullet Consideriamo due solenoidi coassiali con n_1 e n_2 spire rispettivamente
 - I raggi dei due solenoidi sono uguali
 - Supponiamo inoltre che siano molto lunghi
 - Il campo di induzione magnetica B è contenuto completamente all'interno dei solenoidi
- Colleghiamo un generatore di forza elettromotrice $V_{D}(t)$ variabile nel tempo al solenoide 1 (che ha n_1 spire)

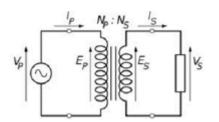
- ullet Il flusso concatenato è $\Phi_1=n_1\Phi$ (Φ è il flusso attraverso una spira)
- ullet Naturalmente il flusso concatenato al secondo solenoide è $\Phi_2=n_2\Phi$
 - ullet Nei solenoidi vengono indotte le forze elettromotrici \mathcal{E}_1 e \mathcal{E}_2

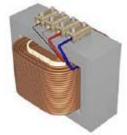
• Nei solenoidi vengono indotte le forze elettromotrici
$$\mathcal{E}_1$$
 e \mathcal{E}_2
$$\mathcal{E}_1 = -\frac{d\Phi_1}{dt} = -n_1\frac{d\Phi}{dt} \qquad \mathcal{E}_2 = -\frac{d\Phi_2}{dt} = -n_2\frac{d\Phi}{dt} \qquad \frac{\mathcal{E}_2}{\mathcal{E}_1} = \frac{-n_2\frac{d\Phi}{dt}}{-n_1\frac{d\Phi}{dt}} = \frac{n_2}{n_1}$$

Se la resistenza dei solenoidi è piccola (vedi diapositiva <u>261</u>)

$$\mathcal{E}_{\!\scriptscriptstyle 1} \approx V_{\!\scriptscriptstyle P}\!\left(t\right) \quad V_{\!\scriptscriptstyle S}\!\left(t\right) = \mathcal{E}_{\!\scriptscriptstyle 2} = \frac{n_{\!\scriptscriptstyle 2}}{n_{\!\scriptscriptstyle 1}} V_{\!\scriptscriptstyle P}\!\left(t\right) \quad \text{for all } t \in \mathbb{F}_{\!\scriptscriptstyle S}$$

• Il simbolo del trasformatore nei circuiti è





ullet Abbiamo trovato l'equazione che descrive l'andamento temporale della corrente i(t) in un circuito $R ext{-}L$

$$i(t) = \frac{\mathcal{E}_0}{R} (1 - e^{-t/\tau})$$

ullet La batteria eroga una potenza $P_{arepsilon}$

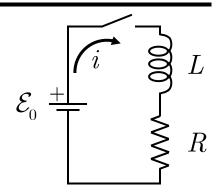
$$P_{\mathcal{E}} = \mathcal{E}_0 iig(tig) = rac{\mathcal{E}_0^2}{R}ig(1-e^{-t/ au}ig) = P_0ig(1-e^{-t/ au}ig)$$

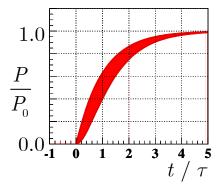
ullet La potenza dissipata nella resistenza è P_R

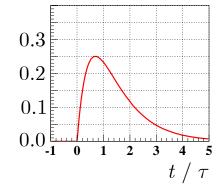
$$P_R = Ri^2 = R \left(\frac{\mathcal{E}_0}{R}\right)^2 \left(1 - e^{-t/ au}\right)^2 = \frac{\mathcal{E}_0^2}{R} \left(1 - e^{-t/ au}\right)^2$$

- La potenza erogata dalla batteria è maggiore di quella dissipata nell resistenza
- La differenza è la potenza trasferita al solenoide

$$P_{L} = P_{\mathcal{E}} - P_{R} = \frac{\mathcal{E}_{0}^{2}}{R} \left(e^{-t/\tau} - e^{-2t/\tau} \right)$$



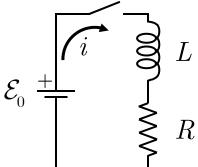




ullet Pertanto viene trasferita una certa quantità di energia W al solenoide

$$W = \int_0^\infty P_L dt = \int_0^\infty \frac{\mathcal{E}_0^2}{R} \left(e^{-2t/\tau} - e^{-t/\tau}\right) dt$$

$$W = \frac{\mathcal{E}_0^2}{R} \frac{\tau}{2} = \frac{1}{2} \frac{L}{R} \frac{\mathcal{E}_0^2}{R} = \frac{1}{2} L I_0^2 \qquad I_0 = \frac{\mathcal{E}_0}{R}$$



0.3

 $P_L 0.2$

 $\bar{P}_{0} |_{0.1}$

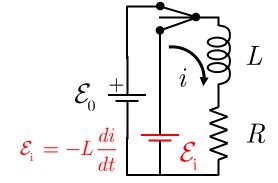
- \bullet L'energia trasferita al solenoide è immagazzinata nel campo magnetico B
 - Può essere recuperata "spegnendo" il campo magnetico come vedremo fra poco
- Si poteva giungere a questo risultato in modo diverso
 - Consideriamo l'equazione del circuito

$$\mathcal{E}_0 - Lrac{di}{dt} = Ri$$
 moltiplichiamo per i $\mathcal{E}_0 i - Lrac{di}{dt}i = Ri^2$

ullet Interpretiamo dicendo che la potenza della batteria $\mathcal{E}_0 i$ è uguale alla potenza dissipata Ri^2 più la potenza trasferita al solenoide P_L

$$P_{\scriptscriptstyle L} = L rac{di}{dt} i \quad P_{\scriptscriptstyle L} dt = L i di \qquad W = \int_0^\infty P_{\scriptscriptstyle L} dt \, = L \int_0^{I_0} i di \, = rac{1}{2} L I_0^2$$

- Vediamo cosa succede se si "spegne" il campo magnetico
 - Modifichiamo il circuito con un deviatore
 - In una posizione si "carica" il solenoide
 - ullet Nell'altra si "scarica" attraverso la resistenza R
 - ullet Supponiamo che nel solenoide circoli una corrente I_0 prima di spostare il deviatore



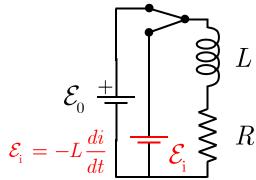
- Senza la batteria la corrente tende a diminuire
 - ullet Compare una fem indotta \mathcal{E}_{i} che si oppone alla diminuzione della corrente
- L'equazione del circuito è simile al caso precedente

ullet Nella resistenza viene dissipata una potenza P_R

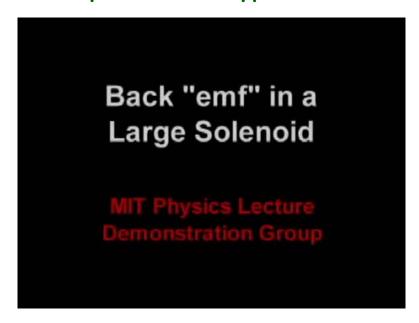
$$P_{R} = Ri^{2} = -Li\frac{di}{dt}$$
 $W = \int_{0}^{\infty} P_{R}dt = -\int_{I_{0}}^{0} Lidi = \frac{1}{2}LI_{0}^{2}$

 Osserviamo che l'energia immagazzinata nel campo viene "recuperata" e dissipata nella resistenza

- Nell'esempio precedente abbiamo supposto che il solenoide venisse "spento" lentamente
 - Si è "staccata" la batteria ma nello stesso istante si è chiuso il circuito su un altro ramo in modo che l'energia venisse dissipata nella resistenza
- Se invece il circuito venisse aperto di colpo la corrente dovrebbe passare a zero istantaneamente



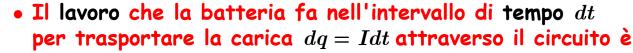
- Nell'esempio precedente abbiamo supposto che il solenoide venisse "spento" lentamente
 - Si è "staccata" la batteria ma nello stesso istante si è chiuso il circuito su un altro ramo in modo che l'energia venisse dissipata nella resistenza
- Se invece il circuito venisse aperto di colpo la corrente dovrebbe passare a zero istantaneamente
 - Una discontinuità nelle corrente genererebbe una fem infinita
 - In pratica si sviluppa una fem molto elevata che genera scariche elettriche



Energia Magnetica

 Abbiamo visto che in un circuito con induttanza e resistenza appare una forza elettromotrice

obiamo visto che in un circuito con induttanza resistenza appare una forza elettromotrice
$$\mathcal{E}_0 + \mathcal{E}_{\mathrm{i}} = RI \qquad \mathcal{E}_0 = -\mathcal{E}_{\mathrm{i}} + RI \qquad \mathcal{E}_{\mathrm{i}} = -\frac{d\Phi}{dt} \qquad \mathcal{E}_0 \stackrel{+}{=} \boxed{}$$
 Il lavoro che la batteria fa nell'intervallo di tempo dt



$$\begin{array}{c|c} & & & \\ \mathcal{E}_0 & & & \\ \hline \mathcal{E}_i & & & \\ \end{array} \qquad \begin{array}{c} L \\ & & \\ \end{array} \qquad \begin{array}{c} R \\ \end{array}$$

$$dW_{\rm b} = \mathcal{E}_0 dq = \mathcal{E}_0 I dt = -\mathcal{E}_{\rm i} I dt + RI^2 dt = I d\Phi + RI^2 dt$$

- Il lavoro della batteria viene quindi speso
 - Per modificare il campo magnetico: $Id\Phi$
 - Come dissipazione Joule nella resistenza: RI^2dt
- ullet Nel seguito trascuriamo l'effetto Joule (Rpprox 0) $dW_{\rm b} = Id\Phi$
- ullet Supponiamo adesso di avere un sistema composto da più circuiti accoppiati (N)
 - La formula precedente viene generalizzata in

$$dW_{
m b} = \sum_{k=1}^{N} I_k d\Phi_k$$

- La corrente del circuito k è I_k
- ullet La variazione del flusso del circuito k è $d\Phi_k$

Energia Magnetica

$$dW_{\mathrm{b}} = \sum_{k=1}^{N} I_k d\Phi_k$$

- ullet Il lavoro dW_b fatto dalla batteria quando le correnti sono mantenute costanti, compensa le forze elettromotrici indotte generate da
 - Eventuali variazioni di flusso dovute a campi magnetici esterni
 - Eventuali variazioni di flusso dovute a spostamenti infinitesimi dei circuiti
- ullet Deriviamo una formula che esprima il lavoro $W_{
 m ext}$ necessario per costruire un sistema composto da
 - N circuiti magnetici
 - ullet Nel circuito k scorre la corrente FINALE I_k
 - ullet Il circuito k è caratterizzato da un flusso FINALE Φ_k
- ullet Durante la costruzione del sistema un agente esterno compie il lavoro $W_{
 m ext}$
 - ullet A esempio posizionando circuiti nei quali circolano correnti I_k
 - Ancora una volta devono compensare le forze elettromotrici che si manifestano in seguito alle variazioni di flusso
- ullet Il lavoro $W_{
 m ext}$ speso per costruire il sistema costituisce l'energia $U_{
 m M}$ immagazzinata nel sistema magnetico: $W_{
 m ext}=U_{
 m M}$

Energia Magnetica

- Calcoliamo l'energia magnetica $U_{
 m M}$ immagazzinata in un sistema descritto da N correnti I_k e N flussi Φ_k
 - L'energia è indipendente dal particolare modo con il quale si raggiunge la condizione finale
 - ullet Partiamo dalla geometria finale, e passiamo dalla condizione iniziale (correnti nulle) alla condizione finale in cui le correnti sono I_k
- Scegliamo di farlo facendo cambiare tutte le correnti in modo proporzionale
 - In un dato istante tutte le correnti e tutti i flussi sono pari ad una frazione del loro valore finale: $I_k(\alpha)=\alpha I_k$ $d\Phi_k(\alpha)=\Phi_k d\alpha$
 - $dU_{\mathrm{M}} = \sum_{k=1}^{N} \alpha I_k d\Phi_k = \sum_{k=1}^{N} \alpha I_k \Phi_k d\alpha$ $U_{\mathrm{M}} = \int_0^1 \sum_{k=1}^{N} \alpha I_k \Phi_k d\alpha = \sum_{k=1}^{N} I_k \Phi_k \int_0^1 \alpha d\alpha$ $U_{\mathrm{M}} = \frac{1}{2} \sum_{k=1}^{N} I_k \Phi_k$
 - La relazione trovata è generale
 - Vale anche in presenza di materiali magnetici purché lineari
- ullet Osserviamo infine che $dW_{
 m b}=2dU_{
 m M}$
 - Il lavoro fatto dalla batteria per mantenere costanti le correnti per variazioni $d\Phi_k$ è il doppio del lavoro necessario per costruire il sistema

Energia potenziale magnetica

- ullet L'energia magnetica $U_{
 m M}$ che abbiamo trattato finora è il lavoro che un agente esterno ha fatto per costruire un sistema magnetico
 - È anche l'energia immagazzinata nel campo
 - Tuttavia non è un'energia potenziale da cui si possono derivare le forze
 - ullet In particolare se $U_{
 m M}$ è una funzione che dipende dalle posizioni dei circuiti magnetici

$$U_{\mathrm{M}} = U_{\mathrm{M}}(\mathbf{r}_{1}, \mathbf{r}_{2})$$

$$\begin{array}{c} \textbf{Non risulta vero che} \\ \mathbf{F}_{\!_{1}} = - \mathbf{\nabla}_{\!_{1}} \mathbf{\nabla}_{\!_{M}} (\mathbf{r}_{\!_{1}}, \mathbf{r}_{\!_{2}}) \\ \mathbf{F}_{\!_{2}} = - \mathbf{\nabla}_{\!_{2}} \mathbf{\nabla}_{\!_{M}} (\mathbf{r}_{\!_{1}}, \mathbf{r}_{\!_{2}}) \end{array}$$

- ullet Supponiamo di spostare la spira 2 di $d\mathbf{r}_2$ mantenendo costanti le correnti
 - ullet Sulla spira 2 agisce la forza ${
 m F_2}$ che compie un lavoro $dW={
 m F_{e2}}\cdot d{
 m r_2}=-{
 m F_{m2}}\cdot d{
 m r_2}$
 - ullet La batteria compie un lavoro $dW_{
 m b}$ per mantenere costanti le correnti

• L'energia magnetica del sistema varia di una quantità
$$dU_{\rm M}$$
• Il bilancio energetico è $dW+dW_{\rm b}=dU_{\rm M}$ $dW=dU_{\rm M}-dW_{\rm b}=-dU_{\rm M}\equiv dV_{\rm M}$
• In definitiva Energia potenziale magnetica

In definitiva

$$-\mathbf{F}_{\mathrm{m2}}\cdot d\mathbf{r}_{\!_{2}} = \mathbf{F}_{\!_{\mathrm{e}2}}\cdot d\mathbf{r}_{\!_{2}} = d\,V_{_{\mathrm{M}}} \qquad \mathbf{F}_{\!_{\mathrm{m}}} = -\mathbf{\nabla}\,V_{_{\mathrm{M}}} \qquad \qquad \boxed{V_{_{\mathrm{M}}} = -U_{_{\mathrm{M}}}}$$