Elettromagnetismo

Prof. Francesco Ragusa Università degli Studi di Milano

Lezione n. 20 - 27.02.2023

Rotore e teorema di Stokes Teorema di Helmoltz Campo elettrostatico e teorema di Helmoltz Forze magnetiche - Esperimento di Oersted.

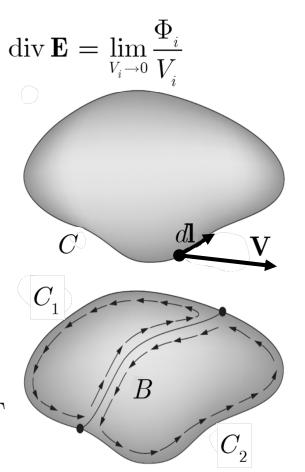
Anno Accademico 2022/2023

- Ricordiamo la procedura seguita nel caso della legge di Gauss
 - Avevamo espresso il flusso attraverso una superficie come la somma di tanti flussi attraverso superfici sempre più piccole
 - Al limite infinite superfici infinitesime
 - Avevamo poi definito la divergenza come limite del rapporto fra il flusso e il volume racchiuso
- ullet Analogamente consideriamo la circuitazione di un campo vettoriale V lungo una curva chiusa C

$$\Gamma = \oint_C \mathbf{V} \cdot d\mathbf{l}$$

- \bullet Otteniamo lo stesso risultato se sommiamo due circuitazioni lungo i cammini C_1 e C_2
 - Notiamo che gli integrali lungo la regione di confine fra C_1 e C_2 (linea B) si elidono
 - Sono percorsi in senso inverso
 - Rimangono i contributi del resto dei cammini

$$\Gamma_1 + \Gamma_2 = \oint_{C_1} \mathbf{V} \cdot d\mathbf{l} + \oint_{C_2} \mathbf{V} \cdot d\mathbf{l} = \oint_C \mathbf{V} \cdot d\mathbf{l} = \Gamma$$



- Il processo appena descritto può essere ripetuto
- $\Gamma_i = \oint_{C_i} \mathbf{V} \cdot d\mathbf{l}$

• Sommando su tutti i cammini rimane solo il contributo del cammino originale (esterno)

$$\Gamma = \sum_{i} \Gamma_{i}$$
 $\Gamma = \oint_{C} \mathbf{V} \cdot d\mathbf{l}$

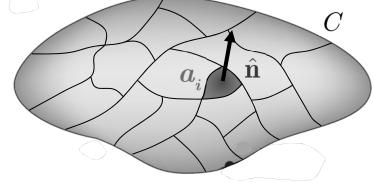
- Al crescere del numero delle suddivisioni il valore delle circuitazioni Γ_i diventa sempre più piccolo: $\Gamma_i \to 0$
- Nel caso della legge di Gauss avevamo definito una proprietà differenziale del campo legata alla legge del flusso calcolando il limite del rapporto fra il flusso Φ_i e il volume V_i con $\Phi_i,\ V_i \to 0$
 - Il limite del rapporto esisteva e definiva la divergenza del campo

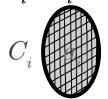
$$\operatorname{div} \mathbf{E} = \lim_{V_i \to 0} \frac{\Phi_i}{V_i}$$

- Analogamente possiamo trovare una proprietà differenziale del campo legata alla legge della circuitazione calcolando il limite del rapporto fra le circuitazioni Γ_i e le superfici a_i
- $\lim_{a_i\to 0}\frac{\Gamma_i}{a_i}$

• Tuttavia ci sono importanti differenze

- Esaminiamo le differenze
 - ullet La superficie a_i è connessa al cammino C_i in modo ambiguo
 - Ad esempio le due superfici di seguito hanno lo stesso contorno C_i ma hanno differenti valori a_i e a_i'



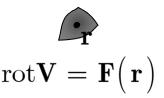


 C_i non individua l'area $\,a_i\,$ in modo univoco

- ullet Il limite del rapporto Γ_i/a_i dipende dalla forma della superficie
- ullet Si può ovviare a questa ambiguità utilizzando la normale $\hat{\mathbf{n}}$ alla superficie
 - \bullet Se si fa tendere a zero la superficie mantenendo fissa la direzione \hat{n} della normale si dimostra che il limite esiste ed è univoco
 - È un limite diverso per ogni direzione
 - In conclusione la grandezza che stiamo definendo è un vettore
 - \bullet Mantenere fissa la direzione della normale equivale a dire che si sta calcolando la componente del vettore nella direzione di \hat{n}
 - Il limite (vettoriale) definisce il rotore del campo vettoriale \mathbf{V} $\hat{\mathbf{n}} \cdot \mathrm{rot} \mathbf{V} = \lim_{a_i \to 0} \frac{\Gamma_i}{a_i}$ In inglese curl \mathbf{V} To curl = arrotolare

• Notiamo che la grandezza che abbiamo definito è una funzione vettoriale del punto r

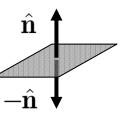
$$\Gamma_i = \oint_{C_i} \mathbf{V} \cdot d\mathbf{l}$$
 $\hat{\mathbf{n}} \cdot \mathrm{rot} \mathbf{V} = \lim_{a_i \to 0} rac{\Gamma_i}{a_i}$ $\mathrm{rot} \mathbf{V} = \mathbf{F}(\mathbf{r})$



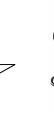
- Inoltre dobbiamo anche risolvere altre due ambiguità
 - Un cammino può essere percorso in due sensi



• La normale alla superficie può avere due versi



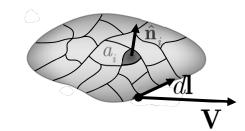
- Si usa la convenzione della mano destra
 - Lega il verso della normale al senso di percorrenza del cammino



Teorema di Stokes

- ullet Il teorema di Stokes lega il flusso del rotore di un campo vettoriale V attraverso una superficie alla circuitazione del campo vettoriale V
 - \bullet È analogo al teorema di Gauss che lega l'integrale di volume della divergenza di un campo vettoriale V al flusso del vettore V
- Consideriamo la circuitazione del campo V

$$\Gamma = \oint_C \mathbf{V} \cdot d\mathbf{I} = \sum_{i=1}^N \Gamma_i = \sum_{i=1}^N \frac{\Gamma_i}{a_i} a_i$$



ullet Per N sufficientemente grande

$$rac{\Gamma_i}{a_i}
ightarrow \hat{\mathbf{n}}_i \cdot ig(\operatorname{rot} \mathbf{V}ig)_{\mathbf{r}_i}$$

• Sostituendo

$$\Gamma = \sum_{i=1}^{N} \hat{\mathbf{n}}_{i} \cdot \left(\operatorname{rot} \mathbf{V} \right)_{\mathbf{r}_{i}} a_{i} \xrightarrow{N \to \infty} \int_{S} \operatorname{rot} \mathbf{V} \cdot \hat{\mathbf{n}} da$$

Otteniamo pertanto il teorema di Stokes

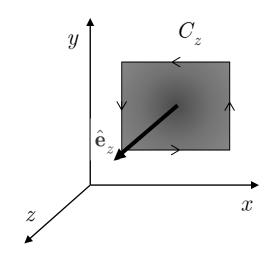
$$\oint_C \mathbf{V} \cdot d\mathbf{l} = \int_S \operatorname{rot} \mathbf{V} \cdot \hat{\mathbf{n}} da$$

La superficie S è arbitraria ma è delimitata da C

- La definizione di rotore che abbiamo dato, benché rigorosa, risulta poco conveniente per un utilizzo nei calcoli $\hat{\mathbf{n}} \cdot \mathrm{rot} \mathbf{V} = \lim_{a_i \to 0} \frac{\Gamma_i}{a_i}$
 - \bullet Ricaviamo un'espressione che consenta di scrivere per un campo vettoriale V le componenti di ${\bf rot}\ V$
 - Esplicitamente e semplicemente
- Il calcolo dipende dal sistema di coordinate utilizzato
 - Utilizziamo le coordinate cartesiane
 - Nelle esercitazioni: espressione del rotore in altri sistemi di coordinate
- ullet La componente del rotore nella direzione $\hat{f n}$ è $\hat{f n} \cdot {
 m rot} {f V}$
 - ullet Per trovare le tre componenti di ${f rot}$ ${f V}$ utilizziamo i tre versori cartesiani
 - $\hat{\mathbf{e}}_{x}$ $\hat{\mathbf{e}}_{y}$ $\hat{\mathbf{e}}_{z}$
 - ullet Ad esempio calcoliamo la componente z

$$\hat{\mathbf{e}}_z \cdot \mathrm{rot} \mathbf{V} = \left(\mathrm{rot} \, \mathbf{V}
ight)_z$$

- ullet Utilizziamo un cammino rettangolare C_z
 - ullet Delimita una superficie parallela al piano $x\!-y$
 - Il cammino è percorso in senso antiorario
 - ullet La normale alla superficie punta nella direzione positiva dell'asse z (regola della mano destra)

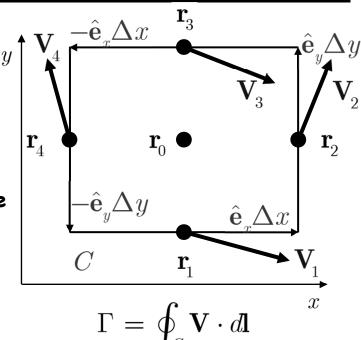


- \bullet Calcoliamo la circuitazione del campo $V({\bf r})$ lungo il cammino rettangolare della figura
 - ullet I lati del rettangolo sono infinitesimi e hanno lunghezza Δx e Δy
 - ullet Calcoliamo il campo V(r) nei punti r_1, r_2, r_3, r_4
 - ullet Definiamo per abbreviare ${
 m V}_i={
 m V}({
 m r}_i)$
 - Approssimando al primo ordine la circuitazione

$$\begin{split} & \Gamma = \mathbf{V}_{\!_{1}} \cdot \hat{\mathbf{e}}_{\!_{x}} \Delta x + \mathbf{V}_{\!_{2}} \cdot \hat{\mathbf{e}}_{\!_{y}} \Delta y - \mathbf{V}_{\!_{3}} \cdot \hat{\mathbf{e}}_{\!_{x}} \Delta x - \mathbf{V}_{\!_{4}} \cdot \hat{\mathbf{e}}_{\!_{y}} \Delta y \\ & \Gamma = V_{\!_{x1}} \Delta x + V_{\!_{y2}} \Delta y - V_{\!_{x3}} \Delta x - V_{\!_{y4}} \Delta y \end{split}$$

 \bullet Le componenti del campo necessarie possono essere calcolate sviluppando al primo ordine intorno al punto \mathbf{r}_0

$$egin{align} V_{x1} &= V_{x0} + rac{\partial\,V_x}{\partial y}iggl(-rac{\Delta y}{2}iggr) \ V_{x3} &= V_{x0} + rac{\partial\,V_x}{\partial y}rac{\Delta y}{2} \ \end{array}$$



$$V_{y2} = V_{y0} + \frac{\partial V_y}{\partial x} \frac{\Delta x}{2}$$

$$V_{y4} = V_{y_0} + \frac{\partial V_y}{\partial x} \left(-\frac{\Delta x}{2} \right)$$

ullet Tutte le derivate sono calcolate nel punto ${f r}_0$

$$V_{x1} = V_{x0} + \frac{\partial V_x}{\partial y} \left(-\frac{\Delta y}{2} \right) \quad V_{x3} = V_{x0} + \frac{\partial V_x}{\partial y} \frac{\Delta y}{2} \quad V_{y2} = V_{y0} + \frac{\partial V_y}{\partial x} \frac{\Delta x}{2} \quad V_{y4} = V_{y0} + \frac{\partial V_y}{\partial x} \left(-\frac{\Delta x}{2} \right)$$

• Introduciamo nell'espressione della circuitazione

$$\Gamma = V_{x1}\Delta x + V_{y2}\Delta y - V_{x3}\Delta x - V_{y4}\Delta y$$

- ullet Notiamo che il contributo V_{x0} nei termini V_{x1} e V_{x3} si cancella
- ullet Analogamente il contributo V_{y0} nei termini V_{y2} e V_{y4}
- Otteniamo

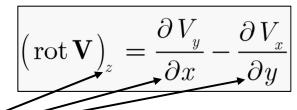
$$\Gamma = -\frac{\partial V_x}{\partial y} \frac{\Delta y}{2} \Delta x + \frac{\partial V_y}{\partial x} \frac{\Delta x}{2} \Delta y - \frac{\partial V_x}{\partial y} \frac{\Delta y}{2} \Delta x + \frac{\partial V_y}{\partial x} \frac{\Delta x}{2} \Delta y$$

$$\Gamma = -\frac{\partial V_x}{\partial y} \Delta y \Delta x + \frac{\partial V_y}{\partial x} \Delta x \Delta y = \left(\frac{\partial V_y}{\partial x} - \frac{\partial V_x}{\partial y}\right) \Delta y \Delta x$$

- ullet L'area della superficie delimitata dal cammino è $a=\Delta x\Delta y$
- Dalla definizione di rotore otteniamo infine

$$\left(\operatorname{rot}\mathbf{V}\right)_{z} = \lim_{a \to 0} \frac{\Gamma}{a} = \frac{\partial V_{y}}{\partial x} - \frac{\partial V_{x}}{\partial y}$$

• Esaminiamo il risultato ottenuto



- In particulare 1'ordine z x y
 - Sono ordinate ciclicamente
- ullet Le componenti del vettore V da derivare sono "le altre" rispetto alla coordinata z del rotore che stiamo calcolando
 - Rispetto alla derivazione sono "scambiate"
- Avendo notato queste regolarità possiamo scrivere le altre due componenti

$$\left(\operatorname{rot}\mathbf{V}\right)_{x} = \frac{\partial V_{z}}{\partial y} - \frac{\partial V_{y}}{\partial z} \qquad \left(\operatorname{rot}\mathbf{V}\right)_{y} = \frac{\partial V_{x}}{\partial z} - \frac{\partial V_{z}}{\partial x}$$

$$\begin{aligned}
& \left(\operatorname{rot} \mathbf{V} \right)_{x} = \frac{\partial V_{z}}{\partial y} - \frac{\partial V_{y}}{\partial z} \\
& \operatorname{rot} \mathbf{V} = \begin{vmatrix} \hat{\mathbf{e}}_{x} & \hat{\mathbf{e}}_{y} & \hat{\mathbf{e}}_{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ V_{x} & V_{y} & V_{z} \end{vmatrix} = \hat{\mathbf{e}}_{x} \left(\frac{\partial V_{z}}{\partial y} - \frac{\partial V_{y}}{\partial z} \right) + \hat{\mathbf{e}}_{y} \left(\frac{\partial V_{x}}{\partial z} - \frac{\partial V_{z}}{\partial x} \right) + \hat{\mathbf{e}}_{z} \left(\frac{\partial V_{y}}{\partial x} - \frac{\partial V_{x}}{\partial y} \right) \\
& \left[\operatorname{rot} \mathbf{V} = \mathbf{\nabla} \times \mathbf{V} \right]
\end{aligned}$$

Teoremi di Gauss e di Stokes

- Il teorema della divergenza è anche noto come teorema di Gauss
 - Da non confondere con la legge di Gauss
- Teorema di Gauss

$$\oint_{S} \mathbf{F} \cdot \hat{\mathbf{n}} da = \int_{V} \mathbf{\nabla} \cdot \mathbf{F} dV$$

- ullet L'uguaglianza fra un integrale di superficie (n=2) e un integrale di volume (n=3)
- ullet Per indicare "la superficie che delimita V" si utilizza anche la notazione ∂V

$$\oint_{\partial V} \mathbf{F} \cdot \hat{\mathbf{n}} da = \int_{V} \mathbf{\nabla} \cdot \mathbf{F} dV$$

• Teorema di Stokes

$$\oint_{C} \mathbf{F} \cdot d\mathbf{l} = \int_{S} \mathbf{\nabla} \times \mathbf{F} \cdot \hat{\mathbf{n}} da$$

- ullet L'uguaglianza fra un integrale di linea (n=1) e un integrale di superficie (n=2)
- ullet Per indicare "la superficie che delimita S" si utilizza anche la notazione ∂S

$$\oint_{\partial S} \mathbf{F} \cdot d\mathbf{l} = \int_{S} \mathbf{\nabla} \times \mathbf{F} \cdot \hat{\mathbf{n}} da$$

Il rotore del campo elettrostatico

ullet Applichiamo il teorema di Stokes al campo elettrostatico ${f E}$

$$\oint_{C} \mathbf{E} \cdot d\mathbf{l} = \int_{S} \mathbf{\nabla} \times \mathbf{E} \cdot \hat{\mathbf{n}} da$$

ullet Sappiamo inoltre che per un campo elettrostatico e per un cammino arbitrario C

 $\oint_C \mathbf{E} \cdot d\mathbf{l} = 0$

ullet L'arbitrarietà di $\,C$ implica che per una superficie arbitraria $\,S\,$

$$\int_{S} \mathbf{\nabla} \times \mathbf{E} \cdot \hat{\mathbf{n}} da = 0$$

• Ovviamente ne consegue che

$$\nabla \times \mathbf{E} = 0$$

- Questa è la forma differenziale della legge sulla circuitazione del campo elettrostatico
- È condizione necessaria e sufficiente
- È una delle leggi di Maxwell in forma differenziale nel limite statico

Campi conservativi

- Vale la pena notare che se un campo vettoriale è il gradiente di un campo scalare il suo rotore è identicamente nullo
 - Infatti sia $\mathbf{V} = \mathbf{\nabla}\phi = \hat{\mathbf{e}}_x \frac{\partial \phi}{\partial x} + \hat{\mathbf{e}}_y \frac{\partial \phi}{\partial y} + \hat{\mathbf{e}}_z \frac{\partial \phi}{\partial z}$
 - Calcoliamo il rotore di V
 - ullet Ad esempio la componente x
 - $\left(\mathbf{\nabla} \times \mathbf{V} \right)_{x} = \frac{\partial V_{z}}{\partial y} \frac{\partial V_{y}}{\partial z}$ ullet Sostituendo V_u e V_z

$$\left(\mathbf{\nabla} \times \mathbf{V}\right)_{x} = \frac{\partial}{\partial y} \frac{\partial \phi}{\partial z} - \frac{\partial}{\partial z} \frac{\partial \phi}{\partial y} = \frac{\partial^{2} \phi}{\partial y \partial z} - \frac{\partial^{2} \phi}{\partial y \partial z} = 0$$

- Risultati analoghi per le altre due componenti
 - Anche in questo caso si tratta di condizione necessaria e sufficiente
- ullet Notiamo che imporre che il campo elettrico ${f E}$ sia il gradiente di un campo scalare assicura il campo E soddisfi l'equazione di Maxwell

$$\nabla \times \mathbf{E} = 0$$

ullet Notiamo infine che nei libri inglesi e americani si usa anche la notazione $\operatorname{curl} V$

$$rot \mathbf{V} = curl \mathbf{V} = \mathbf{\nabla} \times \mathbf{V}$$

Significato fisico del rotore

• Per comprendere il significato fisico del rotore utilizziamo ancora una volta un

esempio preso dalla fluidodinamica

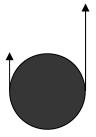
• Il flusso dell'acqua di un fiume

• La velocità non è uniforme

• È nulla sull'argine, massima al centro

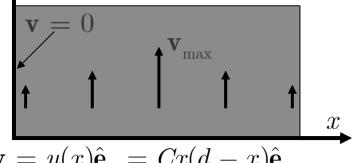
• Un oggetto galleggiante è sottoposto ad un momento delle forze di attrito

• Le forze sono differenti perché le velocità sono differenti

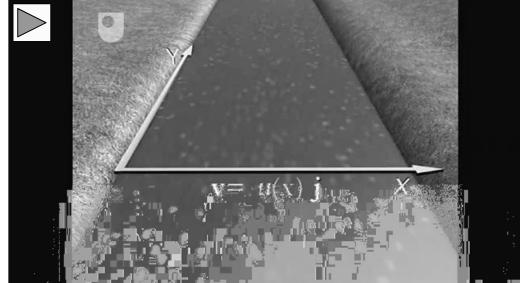


$$\nabla \times \mathbf{v} = C(d-2x)\hat{\mathbf{e}}_{x}$$

• Dimensionalmente $\nabla \times \mathbf{v}$ è una velocità angolare



 $\mathbf{v} = u(x)\hat{\mathbf{e}}_{u} = Cx(d-x)\hat{\mathbf{e}}_{u}$



• https://www.youtube.com/watch?v=vvzTEbp9lrc

Teorema di Helmholtz

- A questo punto vale la pena sottolineare alcuni aspetti matematici
 - ullet Abbiamo trovato delle equazioni differenziali per il campo ${f E}$
 - Le equazioni definiscono il rotore e la divergenza del campo
 - È legittimo chiedersi se matematicamente il problema sia ben posto
 - ullet Le due equazioni definiscono il campo ${f E}$ senza ambiguità?
- Il teorema di Helmholtz assicura che quanto asseriamo è matematicamente consistente

Teorema di Helmholtz

Sia dato un campo vettoriale F(r) di cui sono noti rotore e divergenza

- a) $\nabla \cdot \mathbf{F} = \rho(\mathbf{r})$
- b) $\nabla \times \mathbf{F} = \mathbf{J}(\mathbf{r})$
- c) Le funzioni $\rho(\mathbf{r})$ e $\mathbf{J}(\mathbf{r})$ si annullano all'infinito più velocemente di $1/r^2$ Sotto queste condizioni il campo $\mathbf{F}(\mathbf{r})$ è univocamente determinato e ha la forma

$$\mathbf{F} = -\boldsymbol{\nabla} V + \boldsymbol{\nabla} \times \mathbf{A} \equiv \mathbf{F}_{\text{irr}} + \mathbf{F}_{\text{sol}} \quad \text{Componente solenoidale} \quad \boldsymbol{\nabla} \cdot \mathbf{F}_{\text{sol}} = 0$$

$$\text{Componente irrotazionale} \quad \boldsymbol{\nabla} \times \mathbf{F}_{\text{irr}} = 0$$

$$V(\mathbf{r}) = \frac{1}{4\pi} \int \frac{\mathbf{\nabla} \cdot \mathbf{F}}{\left| \mathbf{r} - \mathbf{r}' \right|} dV' \qquad \mathbf{A}(\mathbf{r}) = \frac{1}{4\pi} \int \frac{\mathbf{\nabla} \times \mathbf{F}}{\left| \mathbf{r} - \mathbf{r}' \right|} dV'$$

Elettrostatica e teorema di Helmholtz

$$V(\mathbf{r}) = \frac{1}{4\pi} \int \frac{\mathbf{\nabla} \cdot \mathbf{F}}{|\mathbf{r} - \mathbf{r}'|} dV' \qquad \mathbf{A}(\mathbf{r}) = \frac{1}{4\pi} \int \frac{\mathbf{\nabla} \times \mathbf{F}}{|\mathbf{r} - \mathbf{r}'|} dV'$$

• Nel caso dell'elettrostatica F = E

$$\mathbf{A}(\mathbf{r}) = \frac{1}{4\pi} \int \frac{\mathbf{\nabla} \times \mathbf{F}}{\left| \mathbf{r} - \mathbf{r}' \right|} dV'$$

$$\mathbf{\nabla} \cdot \mathbf{E} = \frac{\rho(r)}{\mathbf{\nabla} \times \mathbf{E}} = 0$$

- ullet Il secondo integrale è nullo $^{\mathcal{E}_0}$
- Il campo elettrico è pertanto

$$\mathbf{E} = -\frac{1}{\varepsilon_0} \nabla V + \nabla \mathbf{A} = -\nabla V$$

- ullet Naturalmente il campo scalare V è il potenziale elettrostatico
- Il campo elettrostatico ha solo la componente irrotazionale
- NB: l'espressione del campo è completamente determinata perché conosciamo anche il rotore di E
 - ullet Il fatto che abla imes E=0 non toglie che il valore del rotore sia fondamentale per determinare completamente il campo
- Studieremo presto un campo con divergenza nulla e rotore diverso da zero
 - Il campo di induzione magnetica B
 - ullet Inoltre nel caso dinamico (dipendente da t) il campo elettrico acquisterà anche la componente solenoidale ($\nabla \times \mathbf{E} \neq 0$)

Le forze magnetiche

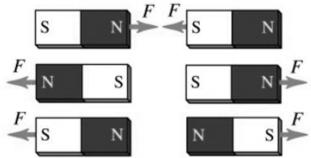
- Come per le forze elettriche anche per i fenomeni magnetici le prime conoscenze sono molto antiche
 - Fin dall'antichità si conoscevano le proprietà di uno strano materiale, la magnetite

• Il nome ha un origine classica, dalla citta Magnesia (Asia Minore) presso

cui si trovava facilmente questo materiale

• Oggi sappiamo che si tratta di una combinazione di ossidi di ferro: ${\rm FeO\cdot Fe_2O_3}$

- È nota la capacita della magnetite di esercitare forze sulla limatura di ferro
- Oggetti costruiti utilizzando la magnetite prendono il nome di magneti (permanenti)
- Una delle proprietà caratteristiche dei magneti è la presenza di due poli (Nord, Sud)
 - Due poli magnetici si attraggono o si respingono
 - Poli di segno diverso si attraggono
 - Nord-Sud
 - Poli di segno uguale si respingono
 - Sud-Sud Nord-Nord



Le forze magnetiche

• Un'altra caratteristica importante di un magnete permanente è l'impossibilità di isolare un polo magnetico

• Il tentativo di isolare un polo, ad esempio spezzando S $N \geqslant S$ il magnete in due parti, porta comunque alla formazione di due o più magneti sempre con due poli S $N \geqslant S$ $N \geqslant S$

• È un fatto sperimentale di fondamentale importanza l'impossibilità di isolare un polo magnetico

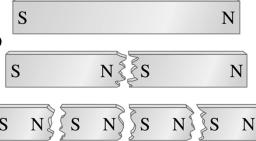
• È una differenza fondamentale con le forze elettriche

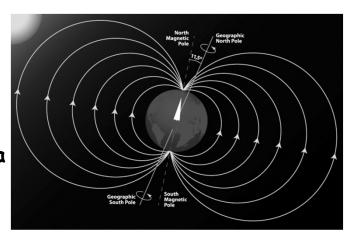
• Una delle applicazioni più importanti delle forze magnetiche è stata senza dubbio la bussola per la navigazione

• Se ne hanno notizie a partire dall'XI secolo

• Si tratta di un sottile magnete permanente (ago magnetico) libero di ruotare in un piano

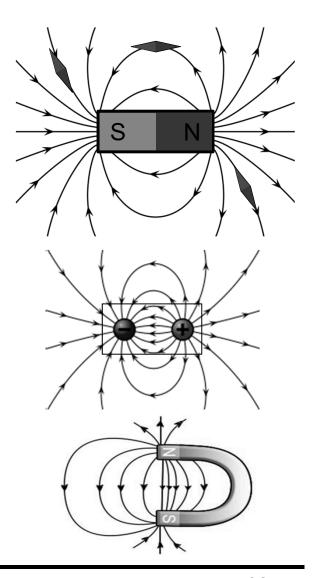
- Il polo nord dell'ago indica la direzione del nord (magnetico)
- Oggi sappiamo che la terra possiede un campo magnetico analogo a quello di un magnete
 - L'asse del campo magnetico della terra forma circa 11.5 gradi con l'asse di rotazione
 - L'ago magnetico si allinea con il campo





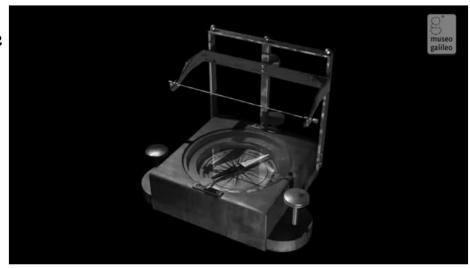
Magneti permanenti

- I magneti permanenti applicano forze
 - Ad altri magneti permanenti
 - A oggetti metallici
 - Generano un campo che permette di calcolare le forze: il campo magnetico
 - Definiremo fra poco rigorosamente il campo magnetico
- Possiamo visualizzare il campo magnetico utilizzando un ago magnetizzato
 - Vale la pena notare le somiglianze con il campo di un dipolo elettrico
 - Vedremo che la somiglianza della "mappa" delle linee di forza non è casuale
 - Attenzione: gli effetti del campo magnetico sono molto diversi da quelli del campo elettrico
- Si possono realizzare magneti permanenti di forme differenti
 - Genera linee di campo parallele all'interno



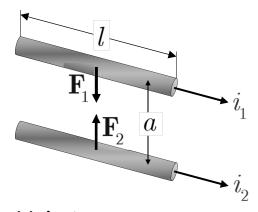
L'esperimento di Oersted

- Per molti secoli la comprensione dei fenomeni magnetici non fece progressi di rilievo
 - Coulomb studiò le forze fra magneti giungendo ad una legge formalmente simile a quella delle forze elettrostatiche
 - Tuttavia non si trattò di una strada destinata a portare ulteriori progressi
 - I fenomeni magnetici rimanevano separati da quelli elettrici
- Nel 1820 Oersted studiava gli effetti delle correnti
 - Da poco le scoperte di Galvani e Volta avevano dotato gli scienziati di un nuovo strumento di ricerca per creare correnti elettriche: le batterie
- Oersted aveva intuito che le forze magnetiche avevano un'origine elettrica
 - Il famoso esperimento di Oersted dimostra l'effetto di una corrente elettrica su un ago magnetico
 - Una corrente elettrica genera un campo magnetico analogo a quello della terra
 - Perpendicolare al filo
- Le cariche in movimento generano un campo magnetico
 - È nato l'elettromagnetismo



Forze fra correnti

- Quasi in contemporanea agli studi di Oersted avanzavano anche gli studi di Ampère
 - Grazie alla possibilità di costruire batterie si potevano studiare gli effetti delle correnti elettriche
 - Ampère scoprì che due fili percorsi da corrente esercitano forze l'uno sull'altro
- Ampère scopre la legge con cui due fili percorsi da corrente si attraggono o si respingono



Correnti nello stesso senso Forza attrattiva

$$F = \mu_0 \frac{i_1 i_2}{2\pi a} l$$

• Nel sistema MKSA

$$\mu_{\rm o}\,=\,4\pi 10^{-7}\,{\rm Kg\,mC^{-2}}$$

Correnti in senso opposto Forza repulsiva