Elettromagnetismo

Prof. Francesco Ragusa Università degli Studi di Milano

Lezione n. 8 - 20.10.2022

Equazioni di Poisson e Laplace
Funzioni armoniche. Teorema di unicità
Coordinate curvilinee
Equazioni differenziali e serie di funzioni

Anno Accademico 2022/2023

Equazioni di Poisson e di Laplace

• Abbiamo espresso la legge di Gauss in forma differenziale

$$\operatorname{div} \mathbf{E} = \mathbf{\nabla} \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0}$$

 ε_0 • Abbiamo inoltre visto che, dal momento che il campo elettrico è conservativo può essere espresso tramite un potenziale

$$\mathbf{E} = -\mathbf{grad}\phi = -\mathbf{\nabla}\phi$$

• Combinando le due equazioni

$$\operatorname{div} \mathbf{E} = -\operatorname{div} \mathbf{grad} \phi = rac{
ho}{arepsilon_0} \qquad \mathbf{\nabla} \cdot \mathbf{E} = -\mathbf{\nabla} \cdot \mathbf{\nabla} \phi = rac{
ho}{arepsilon_0}$$

- ullet L'operatore $oldsymbol{
 abla} \cdot oldsymbol{
 abla} = oldsymbol{
 abla}^2$ prende il nome di Laplaciano
 - L'equazione diventa

$$oldsymbol{
abla}^2\phi=-rac{
ho}{arepsilon_0}$$
 Equazione di Poisson

• In regioni dello spazio in cui non esistono cariche, l'equazione diventa

Notiamo che è l'equazione omogenea associata

$$\nabla^2 \phi = 0$$

Equazione di Laplace

 Abbiamo già detto che si tratta di una delle equazioni differenziali più importanti della fisica matematica

Equazione di Laplace

- Le equazioni scritte sono generali e non dipendono dal sistema di coordinate scelto
 - In coordinate cartesiane

$$\nabla = \hat{\mathbf{e}}_x \frac{\partial}{\partial x} + \hat{\mathbf{e}}_y \frac{\partial}{\partial y} + \hat{\mathbf{e}}_z \frac{\partial}{\partial z} \qquad \longrightarrow \qquad \nabla^2 = \nabla \cdot \nabla = \frac{\partial}{\partial x} \frac{\partial}{\partial x} + \frac{\partial}{\partial y} \frac{\partial}{\partial y} + \frac{\partial}{\partial z} \frac{\partial}{\partial z}$$

$$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

• Le equazioni diventano

$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2} = 0 \qquad \qquad \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2} = -\frac{\rho}{\varepsilon_0}$$

- Queste equazioni hanno infinite soluzioni non banali
- Come vedremo fra poco è indispensabile definire le condizioni al contorno
 - Un aspetto delicato e spesso molto complicato
 - Reso più semplice dall'utilizzo di opportuni sistemi di coordinate
- La soluzione di queste equazioni richiede metodi matematici avanzati
 - Non affronteremo sistematicamente il problema
 - Esamineremo solamente alcuni dei casi più semplici

Condizioni al contorno

- Per trovare una soluzione dell'equazione di Laplace è indispensabile definire le condizioni al contorno (Boundary Conditions)
 - Nelle equazioni differenziali ordinarie di secondo grado per avere una soluzione unica era necessario definire due condizioni iniziali
 - Ad esempio, posizione e velocità iniziali per determinare univocamente la traiettoria di una particella determinata dalla seconda legge di Newton

$$\frac{d^2\mathbf{r}}{dt^2} = \frac{\mathbf{F}}{m} \qquad \mathbf{r}(t) = \mathbf{r}_0 + \mathbf{v}_0 t + \frac{\mathbf{F}}{2m} t^2$$

• Nel caso delle equazioni differenziali alle derivate parziali la condizione iniziale assume una forma più complessa

$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2} = 0$$

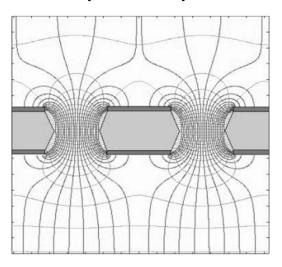
- Occorre definire il dominio: la regione dello spazio in cui si cerca la soluzione
 - Supponendo che lo spazio di interesse sia delimitato da superfici, per trovare una soluzione occorre definire il valore di ϕ sulle superfici stesse
 - Una delle superfici può essere all'infinito
- Le soluzioni dell'equazione di Laplace prendono il nome di funzioni armoniche
 - Ne vedremo fra breve un'importante proprietà

Funzioni armoniche

• In pratica i campi elettrici si generano utilizzando elettrodi metallici posti a

un definito potenziale

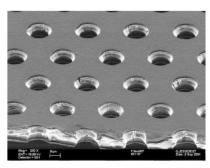
• Esempi di campi elettrici



Cathode Planes

Anode Sense Wires

GEM: Gas Electron Multiplier

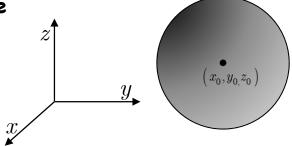


MWPC: Multiwire Proportional Chamber

Funzioni armoniche

- Una importante proprietà delle funzioni armoniche
 - ullet Data una funzione armonica $\phi(x,y,z)$ e una sfera di superficie A centrata in x_0,y_0,z_0

$$\frac{1}{A} \oint_A \phi \left(x, y, z \right) da = \phi \left(x_0, y_{0,} z_0 \right)$$



Il valore medio di una funzione armonica su una sfera arbitraria è uguale al valore della funzione nel centro della sfera

- Questa proprietà significa anche che una funzione armonica non può avere massimi o minimi locali
- ullet Infatti, supponiamo, per assurdo, che abbia un minimo locale in ${f r}$
 - Significa che in tutti i punti ${f r}'$ di un intorno di ${f r}$ tali che $\|{f r}'$ ${f r}$ $\|<arepsilon$ deve essere $\phi({f r})<\phi({f r}')$
 - ullet Pertanto su tutti i punti ${f r}'$ sulla superficie della sfera $\|{f r}'$ ${f r} \| = arepsilon$ (avente centro in ${f r}$) sarà $\phi({f r}') > \phi({f r})$
 - ullet Il valor medio di $\phi({f r}')$ sulla superficie della sfera sarà maggiore di $\phi({f r})$
 - Incompatibile con la proprietà enunciata delle funzioni armoniche
- Ricordiamo la proprietà che in un campo elettrostatico non ci possono essere posizioni di equilibrio stabile

Equazione di Laplace

- Torniamo al problema della definizione delle condizioni al contorno
- Ci sono due modi per definire le condizioni al contorno per l'equazione di Laplace

 $\nabla^2 \phi = 0$

- Condizioni di Dirichelet
 - ullet Si fissa il valore di ϕ su tutte le superfici (conduttori) che delimitano lo spazio di interesse (dominio in cui si cerca la soluzione)
 - ullet Se lo spazio non è chiuso si introduce una superficie all'infinito sulla quale si fissa il valore del potenziale ϕ (di solito un valore nullo)
- Condizione di Neumann
 - ullet Si definisce il valore della derivata normale $\partial \phi/\partial n$ su tutte le superfici (conduttori) che delimitano lo spazio di interesse
 - Nel caso di superfici conduttrici, specificare la derivata normale del potenziale equivale a definire il campo elettrico sul conduttore
 - In ultima analisi, la densità di carica sul conduttore
 - Ancora una volta se lo spazio non è chiuso si introduce una superficie all'infinito sulla quale la derivata normale ha valore definito

Equazione di Laplace

- Teorema di unicità delle soluzioni
 - Una volta fissate le condizioni al contorno la soluzione dell'equazione di Laplace che le soddisfa è unica
- \bullet Consideriamo una regione delimitata dalla superficie "esterna" S_e (eventualmente all'infinito) e da un certo numero di conduttori S_k

 \bullet Supponiamo, per assurdo, che esistano due soluzioni distinte Φ_1 e Φ_2 dell'equazione di Laplace che assumono le stesse condizioni al contorno

 S_1

$$\mathbf{\nabla}^2 \Phi_1 = 0 \qquad \mathbf{\nabla}^2 \Phi_2 = 0$$

- ullet Anche la funzione $\Phi_d=\Phi_1-\Phi_2$ soddisfa l'equazione di Laplace
 - L'operatore laplaciano è lineare

$$\nabla^2 \Phi_d = \nabla^2 (\Phi_1 - \Phi_2) = \nabla^2 \Phi_1 - \nabla^2 \Phi_2 = 0 - 0 = 0$$

ullet Inoltre sulle superfici S_k e S_e

$$\Phi_d\left(S_k\right) = \Phi_1\left(S_k\right) - \Phi_2\left(S_k\right) = \phi_k - \phi_k = 0$$

- ullet Se Φ_d fosse non nulla avrebbe un massimo o un minimo locale: ma $\dot{f e}$ armonica
 - ullet Pertanto concludiamo che $\Phi_d=0$ che implica a sua volta che $\Phi_1=\Phi_2$
- La soluzione è unica

 S_{e}

Schermo elettrostatico

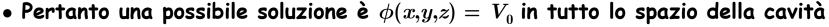
• Il teorema di unicità ci permette di trovare un'altra proprietà dei conduttori

Il potenziale all'interno di un conduttore cavo senza cariche all'interno è costante; il campo elettrico è nullo

- Abbiamo infatti già osservato che la superficie di un conduttore è una superficie equipotenziale
- Il problema elettrostatico all'interno della cavità è pertanto

$$\nabla^2 \phi = 0$$

$$|
abla^2\phi=0| \quad | \quad \phi(S)=V_0
ightarrow {
m costante}$$
 sulle superfici

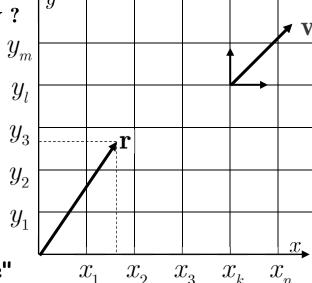


- ullet Infatti se $\phi(x,y,z)$ è costante $abla^2\phi=0$: soddisfa l'equazione di Laplace
- Soddisfa le condizioni al contorno
- Il teorema di unicità mi assicura che la soluzione trovata è anche l'unica
- Lo spazio interno è schermato dai campi elettrostatici esterni
- Formulare le condizioni al contorno è normalmente molto complicato
 - La scelta di un opportuno sistema di coordinate può semplificare il problema
 - Trattiamo in maggiore dettaglio i sistemi di coordinate curvilinee

- Coordinate cartesiane (per semplicità solo due dimensioni)
 - ullet Il vettore posizione ${f r}$ è individuato da due componenti
- $\mathbf{r} = \begin{pmatrix} x \\ y \end{pmatrix}$

- ullet Le componenti cartesiane x,y
- ullet Quali sono le componenti di un vettore applicato $v\ ?$
- Possiamo tracciare due famiglie di curve (linee)
 - ullet Fissato x facciamo variare y in $(-\infty, +\infty)$
 - In forma parametrica

$$\mathbf{r}_{\!\scriptscriptstyle y} = \! \left(egin{matrix} x_{\!\scriptscriptstyle n} \ y \end{matrix}
ight) \qquad \qquad \mathbf{r}_{\!\scriptscriptstyle x} = \! \left(egin{matrix} x \ y_{\!\scriptscriptstyle m} \end{matrix}
ight)$$



- Abbiamo ricoperto il piano con un grigliato di "curve"
 - Troviamo adesso le "tangenti alle curve" nel punto di applicazione del vettore (x_k,y_l)

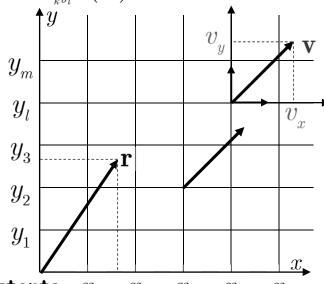
$$\mathbf{t}_{x} = \frac{\partial \mathbf{r}}{\partial x}\Big|_{x_{k}y_{l}} = \begin{pmatrix} 1\\0 \end{pmatrix} = \hat{\mathbf{e}}_{x}$$
 $\mathbf{t}_{y} = \frac{\partial \mathbf{r}}{\partial y}\Big|_{x_{k}y_{l}} = \begin{pmatrix} 0\\1 \end{pmatrix} = \hat{\mathbf{e}}_{y}$

$$\left| \mathbf{t}_{x}
ight| = \left| rac{\partial \mathbf{r}}{\partial x}
ight|_{x_{k}y_{l}} = \left| egin{array}{c} 1 \ 0 \end{array}
ight| = \left| old{\hat{\mathbf{e}}}_{x}
ight|_{x_{k}y_{l}} = \left| old{\hat{\mathbf{e}}}_{y}
ight|_{x_{k}y_{l}} = \left| old{\hat{\mathbf{e}}}_{y}
ight|$$

$$\left|\mathbf{t}_{y}
ight|=rac{\partial\mathbf{r}}{\partial y}igg|_{x_{b}y_{t}}=egin{pmatrix}0\1\end{pmatrix}=\hat{\mathbf{e}}_{y}$$

- ullet I vettori \mathbf{t}_x e \mathbf{t}_y sono anche dei versori
 - Come vedremo non è vero in generale
 - Definiscono localmente due assi ortogonali
 - Ricaviamo le coordinate di v rispetto a questi assi
- Pertanto, in coordinate cartesiane

$$\mathbf{v}ig(x_k,y_lig) = egin{pmatrix} v_x \ v_y \end{pmatrix}$$



- - Non cambia se ci spostiamo in un altro punto
 - Ad esempio nel punto (x_3,y_2)
- Naturalmente per un vettore costante vogliamo

$$\mathbf{v}\left(\left.x_{_{\!3}},y_{_{\!2}}
ight)=\left(egin{array}{c}v_{_{\!x}}\v_{_{\!y}}\end{array}
ight)$$

$$\frac{\partial \mathbf{v}}{\partial x} = \frac{\partial \mathbf{v}}{\partial y} = 0 \quad \text{in coordinate} \\ \text{cartesiane} \quad \frac{\partial v_x}{\partial x} = 0 \quad \frac{\partial v_y}{\partial x} = 0 \quad \text{e analoghe in } y$$

$$rac{\partial v_x}{\partial x} = 0 \quad rac{\partial v_y}{\partial x} = 0 \quad$$
 ea

- Consideriamo adesso un sistema di coordinate polari
 - Ripetiamo gli stessi ragionamenti
 - ullet Il vettore posizione ${f r}$ è individuato da due parametri
 - Le coordinate polari r,θ
 - Se utilizziamo le coordinate polari, come sono definite le componenti ?
 Quali sono le componenti di un vettore v applicato in (r,θ) ?

 Possigmo traccione due famiolie di surve • Se utilizziamo le coordinate polari, come sono definite
- Possiamo tracciare due famiglie di curve
 - In coordinate cartesiane le curve in rappresentazione

parametrica sono
$$\mathbf{r}_{\!_{\theta}} = r_{\!_{k}} \! \left(\! \begin{array}{c} \! \cos \theta \\ \! \sin \theta \! \end{array} \! \right) \qquad \mathbf{r}_{\!_{r}} = r \! \left(\! \begin{array}{c} \! \cos \theta_{l} \\ \! \sin \theta_{l} \! \end{array} \! \right)$$

- ullet Fissato $r{=}r_k$ facciamo variare heta in $(0,\,2\pi)$
- ullet Analogamente fissiamo $heta= heta_l$ e facciamo variare r in $(0,+\infty)_l$
- Abbiamo ricoperto il piano con un grigliato di curve
 - Troviamo adesso le tangenti alle curve

$$\mathbf{t}_{r} = \frac{\partial \mathbf{r}}{\partial r} = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix} \qquad \mathbf{t}_{\theta} = \frac{\partial \mathbf{r}}{\partial \theta} = r \begin{pmatrix} -\sin \theta \\ \cos \theta \end{pmatrix}$$

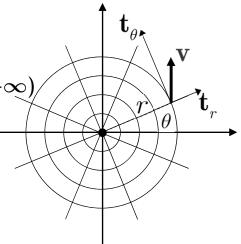
Le componenti cartesiane sono

$$= \begin{pmatrix} r\cos\theta\\r\sin\theta \end{pmatrix}$$

$$r\sin\theta$$

$$r\cos\theta$$

$$r\cos\theta$$



$$\mathbf{t}_{r} = rac{\partial \mathbf{r}}{\partial r} = egin{pmatrix} \cos heta \\ \sin heta \end{pmatrix}$$

$$\mathbf{t}_r = rac{\partial \mathbf{r}}{\partial r} = egin{pmatrix} \cos \theta \ \sin \theta \end{pmatrix} \qquad \mathbf{t}_{ heta} = rac{\partial \mathbf{r}}{\partial heta} = r egin{pmatrix} -\sin \theta \ \cos \theta \end{pmatrix}$$

Calcoliamo i versori dividendo per i moduli

$$\bullet |\mathbf{t}_r| = 1$$

$$|\mathbf{t}_{\theta}| = r$$

$$\hat{\mathbf{e}}_r = rac{\mathbf{t}_r}{\left|\mathbf{t}_r
ight|} = egin{pmatrix} \cos heta \ \sin heta \end{pmatrix}$$

$$\hat{\mathbf{e}}_r = rac{\mathbf{t}_r}{\left|\mathbf{t}_r
ight|} = egin{pmatrix} \cos heta \ \sin heta \end{pmatrix} \qquad \hat{\mathbf{e}}_{ heta} = rac{\mathbf{t}_{ heta}}{\left|\mathbf{t}_{ heta}
ight|} = egin{pmatrix} -\sin heta \ \cos heta \end{pmatrix}$$

- Le proiezioni (locali) di v sui due assi definiscono le componenti del vettore in coordinate polari
 - ullet Le componenti di v sono (v = |v|)

$$v_{r} = v \sin \theta$$

$$v_r = v \sin \theta$$
 $v_\theta = v \cos \theta$

- ullet Attenzione: il vettore v è sempre lo stesso (è un vettore costante)
- Le sue componenti cambiano in funzione dell'angolo polare del punto di applicazione
 - Le componenti dipendono dal punto di applicazione!
 - Il caso delle coordinate cartesiane è molto particolare

- Sottolineiamo le conseguenze del fatto che le componenti del vettore dipendono dal punto di applicazione
 - Consideriamo il vettore costante in coordinate cartesiane

$$\mathbf{v}(x_1,y_1) = \begin{pmatrix} v_x \\ v_y \end{pmatrix}$$
 $\mathbf{v}(x_2,y_2) = \begin{pmatrix} v_x \\ v_y \end{pmatrix}$ $\mathbf{v}(x,y) = v_x \hat{\mathbf{e}}_x + v_y \hat{\mathbf{e}}_y$

• Si ha

$$\frac{\partial \mathbf{v}}{\partial x} = \frac{\partial v_x}{\partial x} \hat{\mathbf{e}}_x + v_x \frac{\partial \hat{\mathbf{e}}_x}{\partial x} + \frac{\partial v_y}{\partial x} \hat{\mathbf{e}}_y + v_y \frac{\partial \hat{\mathbf{e}}_y}{\partial x} = \mathbf{0}$$

• Le componenti sono costanti

$$\frac{\partial v_x}{\partial x} = 0 \quad \frac{\partial v_x}{\partial y} = 0 \quad \frac{\partial v_y}{\partial x} = 0 \quad \frac{\partial v_y}{\partial y} = 0 \quad \text{inoltre } \frac{\partial \hat{\mathbf{e}}_x}{\partial x} = \frac{\partial \hat{\mathbf{e}}_y}{\partial x} = \frac{\partial \hat{\mathbf{e}}_x}{\partial y} = \frac{\partial \hat{\mathbf{e}}_y}{\partial y} = 0$$

• Nel caso del vettore costante in coordinate polari

$$v_r = v \sin \theta \qquad v_\theta = v \cos \theta \qquad \qquad \mathbf{v}(r,\theta) = \hat{\mathbf{e}}_r v \sin \theta + \hat{\mathbf{e}}_\theta v \cos \theta$$

• Si ha

$$\frac{\partial \mathbf{v}}{\partial \theta} = \frac{\partial v_r}{\partial \theta} \hat{\mathbf{e}}_r + v_r \frac{\partial \hat{\mathbf{e}}_r}{\partial \theta} + \frac{\partial v_\theta}{\partial \theta} \hat{\mathbf{e}}_\theta + v_\theta \frac{\partial \hat{\mathbf{e}}_\theta}{\partial \theta} \quad \boxed{\frac{\partial v_r}{\partial \theta} = v \cos \theta \neq 0 \quad \frac{\partial v_\theta}{\partial \theta} = -v \sin \theta \neq 0}$$

• Dobbiamo inoltre calcolare le derivate dei versori

$$\frac{\partial \mathbf{v}}{\partial \theta} = \frac{\partial v_r}{\partial \theta} \hat{\mathbf{e}}_r + v_r \frac{\partial \hat{\mathbf{e}}_r}{\partial \theta} + \frac{\partial v_\theta}{\partial \theta} \hat{\mathbf{e}}_\theta + v_\theta \frac{\partial \hat{\mathbf{e}}_\theta}{\partial \theta} \quad \left[\frac{\partial v_r}{\partial \theta} = v \cos \theta \neq 0 \quad \frac{\partial v_\theta}{\partial \theta} = -v \sin \theta \neq 0 \right]$$

Ricordiamo i versori

 $\hat{\mathbf{e}}_r = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix} \qquad \hat{\mathbf{e}}_\theta = \begin{pmatrix} -\sin \theta \\ \cos \theta \end{pmatrix}$ $\frac{\partial \hat{\mathbf{e}}_r}{\partial \theta} = \begin{pmatrix} -\sin \theta \\ \cos \theta \end{pmatrix} = \hat{\mathbf{e}}_\theta \qquad \frac{\partial \hat{\mathbf{e}}_\theta}{\partial \theta} = \begin{pmatrix} -\cos \theta \\ -\sin \theta \end{pmatrix} = -\hat{\mathbf{e}}_r$

• Introducendo nella derivata di v

$$\frac{\partial \mathbf{v}}{\partial \theta} = v \cos \theta \hat{\mathbf{e}}_r + v \sin \theta \hat{\mathbf{e}}_\theta - v \sin \theta \hat{\mathbf{e}}_\theta + v \cos \theta \left(-\hat{\mathbf{e}}_r \right) = \mathbf{0}$$

- L'altra derivata è più semplice perché non ci sono dipendenze da r $\frac{\partial \mathbf{v}}{\partial r} = 0$
- Concludiamo dicendo che in coordinate polari la variazione delle componenti di un vettore contiene anche le variazioni dovute al sistema di coordinate
 - In una legge fisica le derivate devono esprimere variazioni legate a fenomeni fisici non a effetti geometrici del sistema di coordinate
 - Per questo le leggi fisiche si enunciano utilizzando i vettori

- Generalizziamo quanto fin qui detto a un generico sistema di coordinate curvilinee
 - ullet Il passaggio da un sistema cartesiano (x_1,x_2,x_3) ad un sistema di coordinate, curvilinee (u_1,u_2,u_3) è definito dalle leggi di trasformazione

$$x_1 = f_1\left(u_1,u_2,u_3\right) \quad x_2 = f_2\left(u_1,u_2,u_3\right) \quad x_3 = f_3\left(u_1,u_2,u_3\right) \quad \mathbf{r} = \left\lfloor x_2 \right\rfloor$$
• Facendo variare u_k tenendo costanti le altre due coordinate u_l e u_m il

- punto r descrive una griglia di assi di coordinate curvilinee
- Lo spostamento infinitesimo è

$$d\mathbf{r} = \frac{\partial \mathbf{r}}{\partial u_1} du_1 + \frac{\partial \mathbf{r}}{\partial u_2} du_2 + \frac{\partial \mathbf{r}}{\partial u_3} du_3$$

- Le tre derivate $\mathbf{t}_{_k}=rac{\partial \mathbf{r}^{^1}}{\partial u_{_k}}$ sono i vettori tangenti alle curve degli assi coordinati
 - Non sono necessariamente vettori di norma 1
- ullet Si definiscono i tre versori $\hat{f e}_k = rac{1}{h_i} rac{\partial {f r}}{\partial u_i}$ $h_k = \left| {f t}_k
 ight| = \left| rac{\partial {f r}}{\partial u_i}
 ight|$
 - Se i tre versori sono ortogonali il sistema di coordinate è ortogonale

**

• L'elemento di lunghezza diventa

$$d\mathbf{r} = h_1 \hat{\mathbf{e}}_1 du_1 + h_2 \hat{\mathbf{e}}_2 du_2 + h_3 \hat{\mathbf{e}}_3 du_3$$

• Il quadrato del modulo

$$dr^2 = \sum_{i,j=1}^3 g_{ij} du_i du_j \qquad \qquad g_{ij} = h_i h_j \hat{f e}_i \cdot \hat{f e}_j$$

• Se il sistema di coordinate curvilinee è ortogonale i versori sono ortogonali

$$\hat{\mathbf{e}}_i \cdot \hat{\mathbf{e}}_j = \delta_{ij}$$
 $dr^2 = h_1^2 du_1^2 + h_2^2 du_2^2 + h_3^2 du_3^2$

• L'elemento di volume si ottiene con un prodotto triplo (coordinate ortogonali)

$$dV = \mathbf{t}_1 du_1 \cdot (\mathbf{t}_2 du_2 \times \mathbf{t}_3 du_3) \qquad dV = h_1 h_2 h_3 du_1 du_2 du_3$$

• Infine abbiamo visto (diapositiva 92) come calcolare l'elemento di superficie vettoriale (coordinate ortogonali)

$$d\mathbf{a}_1 = \mathbf{t}_2 \times \mathbf{t}_3 du_2 du_3 \qquad d\mathbf{a}_2 = \mathbf{t}_3 \times \mathbf{t}_1 du_3 du_1 \qquad d\mathbf{a}_3 = \mathbf{t}_1 \times \mathbf{t}_2 du_1 du_2$$
$$da_1 = h_2 h_3 du_2 du_3 \qquad da_2 = h_3 h_1 du_3 du_1 \qquad da_3 = h_1 h_2 du_1 du_2$$

• Per concludere definiamo due dei più importanti sistemi di coordinate curvilinee

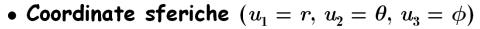
Per concludere definiamo due dei più importanti sistemi de Coordinate cilindriche (
$$u_1=\rho,\ u_2=\phi,\ u_3=z$$
)
$$x_1=\rho\cos\phi \quad x_2=\rho\sin\phi \quad x_3=z \quad \mathbf{r}=\begin{pmatrix} x_1\\x_2\\x_3 \end{pmatrix}$$

$$\mathbf{t}_i=\frac{\partial\mathbf{r}}{\partial u_i} \qquad h_i=\left\|\mathbf{t}_i\right\| \qquad \hat{\mathbf{e}}_i=\frac{1}{h_i}\mathbf{t}_i$$

$$h_{_{\! 1}} = h_{_{\!
ho}} = 1 \qquad h_{_{\! 2}} = h_{_{\! \phi}} =
ho \qquad h_{_{\! 3}} = h_{_{\! z}} = 1$$

$$\hat{\mathbf{e}}_{\rho} = \begin{pmatrix} \cos \phi \\ \sin \phi \\ 0 \end{pmatrix} \qquad \hat{\mathbf{e}}_{\phi} = \begin{pmatrix} -\sin \phi \\ \cos \phi \\ 0 \end{pmatrix} \qquad \hat{\mathbf{e}}_{z} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

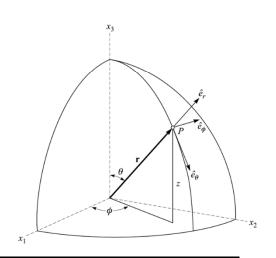
$$dr^2 = d\rho^2 + r^2 d\phi^2 + dz^2$$



$$x_1 = r \sin \theta \cos \phi$$
 $x_2 = r \sin \theta \sin \phi$ $x_3 = r \cos \theta$

$$\hat{\mathbf{e}}_{r} = \begin{pmatrix} \sin\theta\cos\phi \\ \sin\theta\sin\phi \\ \cos\theta \end{pmatrix} \qquad \hat{\mathbf{e}}_{\theta} = r \begin{pmatrix} \cos\theta\cos\phi \\ \cos\theta\sin\phi \\ -\sin\theta \end{pmatrix} \qquad \hat{\mathbf{e}}_{\phi} = r \begin{pmatrix} -\sin\theta\sin\phi \\ \sin\theta\cos\phi \\ 0 \end{pmatrix}$$

$$h_1 = h_r = 1$$
 $h_2 = h_{\theta} = r$ $h_3 = h_{\phi} = r \sin \theta$
$$dr^2 = dr^2 + r^2 d\theta^2 + r^2 \sin^2 \phi d\phi^2$$



Soluzione di equazioni differenziali

• Consideriamo una equazione molto semplice e nota

$$\frac{d^2f\left(x\right)}{dx^2} = -f\left(x\right) \qquad \text{con le condizioni iniziali} \qquad f\left(0\right) = 0 \quad f'\left(x\right) = \frac{df\left(x\right)}{dx} = 1$$

• La soluzione a questa equazione si trova utilizzando una serie infinita

$$f\!\left(x\right) = \sum_{n=0}^\infty a_n x^n = a_0 + \sum_{n=1}^\infty a_n x^n \qquad \text{per la condizione iniziale} \quad f\!\left(0\right) = a_0 = 0$$
 • La derivata prima è

$$f'\big(x\big)=\sum_{n=1}^\infty na_nx^{n-1}=a_1+\sum_{n=2}^\infty na_nx^{n-1} \ \text{ per la condizione iniziale } \ f'\big(0\big)=a_1=1$$

• Calcoliamo infine la derivata seconda

$$\frac{d^2f}{dx^2} = \sum_{n=2}^{\infty} n(n-1)a_n x^{n-2}$$

ullet Modifichiamo la serie per rendere più esplicita la potenza di x

$$\frac{d^2 f}{dx^2} = \sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}x^n$$

Soluzione di equazioni differenziali

$$f(x) = \sum_{n=0}^{\infty} a_n x^n$$

$$\left| f(x) = \sum_{n=0}^{\infty} a_n x^n \right| \qquad \left| \frac{d^2 f}{dx^2} = \sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2} x^n \right| \qquad a_0 = 0 \qquad a_1 = 1$$

$$a_0 = 0 \qquad a_1 = 1$$

• Scriviamo l'equazione differenziale utilizzando le due serie

$$\frac{d^2f(x)}{dx^2} = -f(x) \qquad \blacksquare$$

$$\frac{d^2 f(x)}{dx^2} = -f(x) \qquad \sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}x^n = -\sum_{n=0}^{\infty} a_n x^n$$

ullet Raccogliendo i coefficienti della stessa potenza x^n

$$\sum_{n=0}^{\infty} \left[(n+2)(n+1)a_{n+2} + a_n \right] x^n = 0 \qquad (n+2)(n+1)a_{n+2} + a_n = 0$$

$$(n+2)(n+1)a_{n+2} + a_n = 0$$

$$a_{n+2} = -\frac{a_n}{\big(n+2\big)\big(n+1\big)} \qquad \qquad a_2 = -\frac{a_0}{2} = 0 \qquad \boxed{ \mbox{vale per tutti gli indici pari} }$$

$$a_2 = -\frac{a_0}{2} = 0$$

$$a_3 = -\frac{a_1}{3 \cdot 2} = -\frac{1}{3!}$$

$$a_3 = -\frac{a_1}{3 \cdot 2} = -\frac{1}{3!}$$
 $a_5 = -\frac{a_3}{5 \cdot 4} = \frac{1}{5 \cdot 4 \cdot 3 \cdot 2} = \frac{1}{5!}$

$$f(x) = 1 - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$$

Questa serie ha un nome

$$f(x) = \sin(x)$$

Soluzione di equazioni differenziali

- Osservazioni
 - ullet Conosciamo la funzione $\sin x$ e le sue proprietà dalla trigonometria
 - Si tratta di una funzione trascendente
 - Non è esprimibile tramite un numero finito di funzioni elementari
 - È definita dall'equazione differenziale
 - Le sue proprietà possono essere ricavate indipendentemente dalla trigonometria
 - Con una interpretazione astratta la soluzione trovata può essere vista come
 - Generalizzazione a dimensione infinita dello sviluppo di un vettore rispetto ai vettori di una base

$$\mathbf{v} = a_1 \mathbf{u}_1 + a_2 \mathbf{u}_2 + \dots$$
 $f(x) = a_1 \mathbf{u}_1(x) + a_2 \mathbf{u}_2(x) + \dots$

- Le funzioni f(x) sono i "vettori"
- ullet I monomi $u_k(x)=x^k$ sono i vettori della "base"
- Molto più che una semplice analogia
- ullet I monomi x^k non hanno particolari proprietà
 - Si possono usare altre funzioni come base
 - ullet Ad esempio $u_k(x)=\sin\!kx$ insieme a $w_k(x)=\cos\!kx$
 - Conducono alla serie di Fourier