Elettromagnetismo

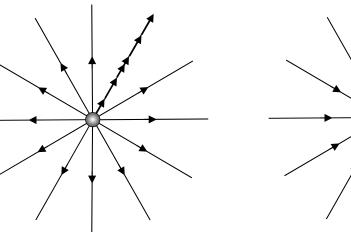
Prof. Francesco Ragusa Università degli Studi di Milano

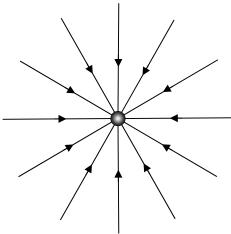
Lezione n. 3 - 06.10.2022

Visualizzazione del campo elettrico Distribuzioni di carica. Esempi. Potenziale elettrostatico Superfici equipotenziali

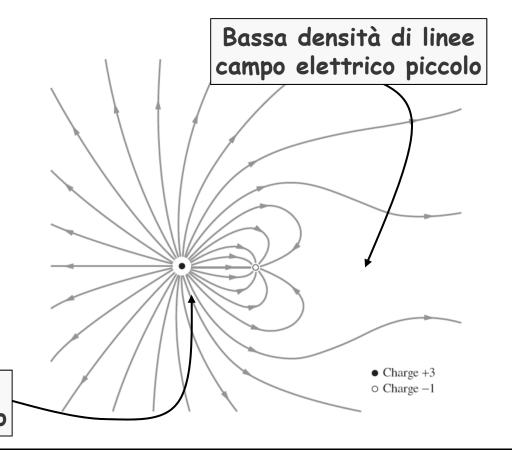
Anno Accademico 2022/2023

- \bullet Con il calcolo del Campo Elettrico si assegna ad ogni punto ${\bf r}$ dello spazio un vettore ${\bf E}({\bf r})$
 - ullet sottinteso che $\mathbf{E}(\mathbf{r})$ è un vettore applicato nel punto \mathbf{r}
- La visualizzazione di un campo elettrico con metodi grafici è difficile
 - Di solito a due dimensioni. Un'approssimazione inadeguata
- Il metodo più utilizzato è quello delle linee di campo
 - Si tratta di linee curve che sono tangenti al campo elettrico in ogni punto
- ullet Consideriamo per cominciare il campo elettrico di una carica puntiforme q>0
- \bullet Tracciamo una linea allontanandoci dalla carica positiva richiedendo che sia sempre tangente a $E(\mathbf{r})$
 - Lo stesso per le altre
- Notiamo che le linee "escono" dalla carica positiva
 - È una sorgente
- Per una carica negativa la situazione è analoga
 - Le linee "entrano" nella carica negativa
 - È un pozzo



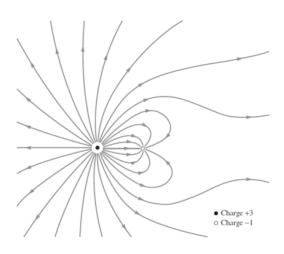


- ullet Consideriamo adesso il campo generato da una carica $q_+=+3$ e una carica $q_-=-1$ (unità arbitrarie)
 - \bullet Tracciamo una linea allontanandoci dalla carica positiva richiedendo che sia sempre tangente a $E({\bf r})$
- Lo stesso per le altre

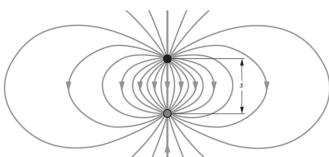


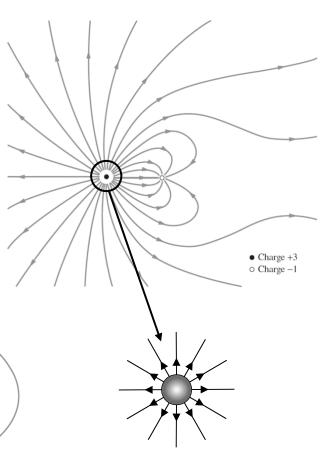
Alta densità di linee campo elettrico elevato

- Si potrebbe dare una definizione analitica delle linee di campo
 - Un breve accenno e un esempio si trovano nel testo di Mazzoldi, Nigro, Voci
- Non ci addentreremo nella descrizione analitica delle linee di campo
 - Potreste utilizzare il vostro computer e le tecniche di programmazione dei laboratori di informatica per rappresentare graficamente alcuni campi elettrici
- È bene tenere presente alcune proprietà delle linee di campo
 - In ogni punto la tangente alla linea dà la direzione del campo elettrico
 - La densità locale delle linee di campo è maggiore dove il campo elettrico è più intenso
 - In pratica si disegnano un numero di linee proporzionale al valore delle cariche positive
 - Termineranno sulle cariche negative o all'infinito
 - Le linee di campo non si incrociano mai
 - Se si incrociassero, nel punto di incrocio il campo elettrico avrebbe due direzioni simultaneamente



- Le linee di campo originano dalle cariche positive e terminano su quelle negative
 - Oppure possono partire o terminare all'infinito
- Il numero di linee che originano da una carica (o terminano su una carica) è proporzionale alla grandezza della carica
 - Caso particolare: in un sistema con due cariche uguali tutte le linee che originano dalla carica positiva terminano sulla carica negativa
 - Eventualmente passando per l'infinito





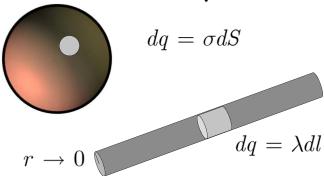
• Anche per sistemi con più di una carica, a distanze molto piccole dalle cariche puntiformi le linee di campo sono radiali

Distribuzioni di carica

- Fino ad ora abbiamo considerato solo cariche puntiformi
 - Particelle cariche di dimensioni trascurabili
 - Matematicamente punti senza dimensione
- Risulta tuttavia conveniente generalizzare il concetto di carica e ammettere che la carica possa essere una sorta di sostanza continua caratterizzata da una densità volumetrica di carica ρ ($\mathrm{Coulomb/m^3}$)
 - ullet Un volume dV=dxdydz contiene una carica dq

$$dq = \rho dV$$

- Abbiamo già visto che la materia contiene dell'ordine di 10^{23} elettroni per ${
 m cm}^3$
 - Un numero estremamente elevato che giustifica la trattazione continua
 - ullet Almeno finché dV è piccolo ma sempre di dimensioni macroscopiche, non atomiche
- Naturalmente la densità di carica è, in generale, una funzione della posizione
- Accanto alla densità volumetrica si usano anche
 - La densità superficiale σ : $dq = \sigma \ dS$
 - La densità lineare λ : $dq = \lambda \ dl$



Distribuzioni di carica

- Richiamiamo la formula scritta per il calcolo del campo elettrico
 - Per una data configurazione di cariche puntiformi

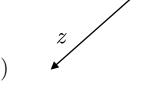
$$\mathbf{E}(\mathbf{r}_0) = \frac{1}{4\pi\varepsilon_0} \sum_{j=1}^{N} \frac{q_j}{\left|\mathbf{r}_0 - \mathbf{r}_j\right|^2} \hat{\mathbf{r}}_{0j}$$

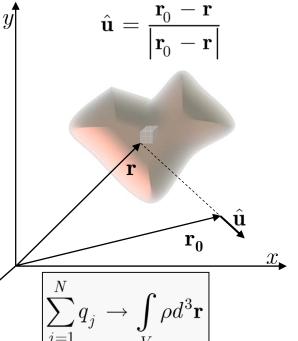
- La formula può essere generalizzata al caso di distribuzioni continue di carica
 - Consideriamo un oggetto con una generica distribuzione di carica descritta dalla funzione $\rho(\mathbf{r})$
 - ullet Individuiamo un volume $dV=dxdydz\equiv d^3{
 m r}$ all'interno
 - La sua carica è $dq = \rho(\mathbf{r}) d^3\mathbf{r}$
 - \bullet È la generalizzazione di ${\it q_j} \quad \left| q_j \right. \rightarrow dq({\bf r}) = \rho({\bf r}) dV$

$$q_j \rightarrow dq(\mathbf{r}) = \rho(\mathbf{r})dV$$

- La somma è sostituita da un integrale
- Il campo in r_0 è

$$\mathbf{E}(\mathbf{r}_0) = rac{1}{4\piarepsilon_0} \int_V rac{
ho(\mathbf{r})d^3\mathbf{r}}{\left|\mathbf{r}_0 - \mathbf{r}
ight|^2} \hat{\mathbf{u}}(\mathbf{r})$$





- ullet Il versore $\hat{f u}({f r})$ punta dalla posizione ${f r}$ della carica $dq=
 ho d^3{f r}$ al punto ${f r}_0$
- L'integrale è esteso a tutto il volume dell'oggetto

Campo generato da un anello

- ullet Consideriamo un anello di carica Q e di raggio r.

 Calcolare il campo elettrico in un generico punto sull'asse
 - ullet Supponiamo che le dimensioni trasversali dell'anello siano trascurabili rispetto al raggio r
 - ullet Possiamo modellizzarlo come una distribuzione lineare di carica di densità $\lambda = Q/(2\pi r)$

- ullet La lunghezza dell'elemento è $dl=r\,d\phi$
- La carica dell'elemento è $dQ = \lambda dl = \lambda \, r \, d\phi$

- ullet La distanza del punto considerato dall'elemento di carica \dot{ullet} d
- ullet Il modulo del campo elettrico è $dE=|d{f E}|$

ullet Il campo elettrico generato dall'elemento forma un angolo lpha con l'asse z

$$ullet$$
 La proiezione lungo l'asse z del campo è $dE_z=dE\,\cos\!lpha$

$$dE_z = \frac{\lambda r d\phi}{4\pi\varepsilon_0} \frac{1}{r^2 + h^2} \frac{h}{\sqrt{r^2 + h^2}}$$

- ullet La proiezione perpendicolare all'asse z si elide con il contributo dell'elemento sull'anello posto ad un angolo $\phi+\pi$
- ullet Il campo elettrico totale si trova integrando E_z su ϕ
 - ullet Per z < 0 il campo cambia segno
 - ullet Sufficiente considerare h con segno

$$E_{z} = \int_{0}^{2\pi} dE_{z} = \frac{2\pi\lambda r}{4\pi\varepsilon_{0}} \frac{1}{r^{2} + h^{2}} \frac{h}{\sqrt{r^{2} + h^{2}}}$$

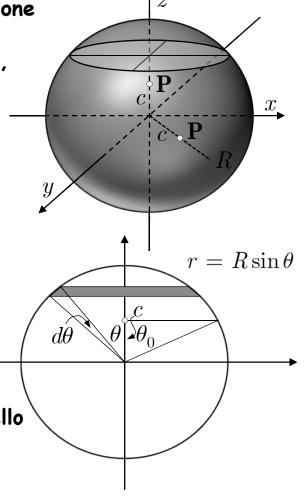
ullet Calcolare il campo elettrico all'interno di un guscio sferico cavo di raggio R e carica totale Q distribuita uniformemente sulla superficie

• Il guscio può essere modellizzato come una distribuzione di carica superficiale uniforme $\sigma=Q/4\pi R^2$

ullet Consideriamo un generico punto P all'interno del guscio, a distanza c dal centro

- ullet Non si perde generalità nella soluzione se si considera il punto P sull'asse z
- Il problema può adesso essere risolto suddividendo il guscio in tanti anelli e utilizzare la soluzione trovata per il campo generato da un anello (sull'asse)
 - ullet Un generico anello è individuato dall'angolo polare heta
 - ullet E dalla sua estensione trasversale infinitesima d heta
 - La superficie dell'anello è $da = 2\pi R \sin \theta R d\theta = 2\pi R^2 \sin \theta d\theta$
 - La carica dell'anello è $dq = \sigma da = \sigma 2\pi R^2 \sin\theta d\theta$
 - L'altezza (con segno) del punto P sul piano dell'anello

$$h = c - R\cos\theta \qquad \qquad h = R\cos\theta_0 - R\cos\theta$$



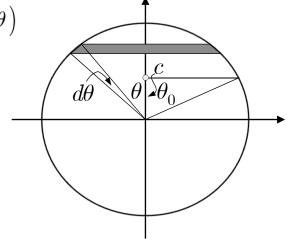
$$dq = \sigma 2\pi R^2 \sin\theta d\theta$$

• Riepilogando
$$dq = \sigma 2\pi R^2 \sin\theta d\theta$$
 $h = R(\cos\theta_0 - \cos\theta)$

$$r = R\sin\theta$$

• Il campo generato dall'anello è

$$E_z = \frac{dq}{4\pi\varepsilon_0} \frac{1}{r^2 + h^2} \frac{h}{\sqrt{r^2 + h^2}}$$



Sostituendo

$$dE_z = \frac{\sigma 2\pi R^2 \sin\theta d\theta}{4\pi\varepsilon_0} \frac{1}{R^2 \sin^2\theta + R^2 \left(\cos\theta_0 - \cos\theta\right)^2} \frac{R \left(\cos\theta_0 - \cos\theta\right)}{\sqrt{R^2 \sin^2\theta + R^2 \left(\cos\theta_0 - \cos\theta\right)^2}}$$

$$dE_z = \frac{\sigma 2\pi \sin\theta d\theta}{4\pi\varepsilon_0} \frac{1}{\sin^2\theta + \left(\cos\theta_0 - \cos\theta\right)^2} \frac{\left(\cos\theta_0 - \cos\theta\right)}{\sqrt{\sin^2\theta + \left(\cos\theta_0 - \cos\theta\right)^2}}$$

$$dE_z = \frac{\sigma \sin \theta d\theta}{2\varepsilon_0} \frac{\cos \theta_0 - \cos \theta}{\left[\sin^2 \theta + \left(\cos \theta_0 - \cos \theta\right)^2\right]^{\frac{3}{2}}}$$

$$dE_z = \frac{\sigma \sin \theta d\theta}{2\varepsilon_0} \frac{\cos \theta_0 - \cos \theta}{\left[\sin^2 \theta + \left(\cos \theta_0 - \cos \theta\right)^2\right]^{\frac{3}{2}}} \qquad x = \cos \theta$$
$$x_0 = \cos \theta_0$$
$$dx = -\sin \theta d\theta$$

Pertanto

$$\begin{split} E_z &= \int_0^\pi \frac{\sigma \sin \theta d\theta}{2\varepsilon_0} \frac{\cos \theta_0 - \cos \theta}{\left[\sin^2 \theta + \left(\cos \theta_0 - \cos \theta\right)^2\right]^{\frac{3}{2}}} \\ &= \int_{-1}^{+1} \frac{\sigma}{2\varepsilon_0} \frac{x_0 - x}{\left[1 - x^2 + \left(x_0 - x\right)^2\right]^{\frac{3}{2}}} dx \\ E_z &= \int_{-1}^{+1} \frac{\sigma}{2\varepsilon_0} \frac{x_0 - x}{\left[1 + x_0^2 - 2x_0 x\right]^{\frac{3}{2}}} dx \end{split}$$

ullet Operiamo un cambio di variabile $x_0-x=y$ dx=-dy

$$x_0 - x = y \qquad dx = -dy$$

- ullet I limiti di integrazione diventano $-1 o x_0 + 1 o x_0 1$
- Sostituendo (cambiando l'ordine di integrazione)

$$E_z = \frac{\sigma}{2\varepsilon_0} \int_{x_0 - 1}^{x_0 + 1} \frac{y}{\left[1 + x_0^2 - 2x_0(x_0 - y)\right]^{\frac{3}{2}}} dy = \frac{\sigma}{2\varepsilon_0} \int_{x_0 - 1}^{x_0 + 1} \frac{y}{\left[1 - x_0^2 + 2x_0y\right]^{\frac{3}{2}}} dy$$

$$E_z = \frac{\sigma}{2\varepsilon_0} \int_{x_0 - 1}^{x_0 + 1} \frac{y}{\left[1 - x_0^2 + 2x_0 y\right]^{\frac{3}{2}}} dy \qquad \qquad X^{\frac{1}{2}} = \left(1 - x_0^2 + 2x_0 x\right)^{\frac{1}{2}}$$

- L'integrale si trova nelle tabelle di integrali
 - Posto

$$X^{\frac{1}{2}} = (a + bx)^{\frac{1}{2}}$$

$$X^{\frac{1}{2}} = \frac{2}{b^2} \left[X^{\frac{1}{2}} + \frac{a}{Y^{\frac{1}{2}}} \right]$$

- Nel nostro problema $a=1-x_0^2$ $b=2x_0^2$
- - ullet Calcoliamo $X^{rac{1}{2}}$ esteso fra gli estremi di integrazione

$$\left. X^{\frac{1}{2}} \right|_{x=x_0-1} = \left(1 - x_0^2 + 2x_0 \left(x_0 - 1 \right) \right)^{\frac{1}{2}} = \left(1 + x_0^2 - 2x_0 \right)^{\frac{1}{2}} = 1 - x_0$$

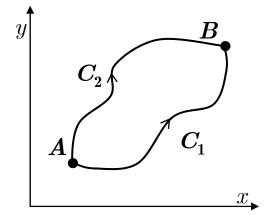
$$\left. X^{\frac{1}{2}} \right|_{x=x_0+1} = \left(1 - x_0^2 + 2x_0 \left(x_0 + 1 \right) \right)^{\frac{1}{2}} = \left(1 + x_0^2 + 2x_0 \right)^{\frac{1}{2}} = 1 + x_0$$

$$\begin{split} \int_{x_0-1}^{x_0+1} \frac{x dx}{X^{\frac{3}{2}}} &= \frac{2}{4x_0^2} \bigg[X^{\frac{1}{2}} + \frac{1-x_0^2}{X^{\frac{1}{2}}} \bigg]_{x_0-1}^{x_0+1} \frac{2}{4x_0^2} \bigg[\bigg[1 + x_0 + \frac{1-x_0^2}{1+x_0} \bigg] - \bigg[1 - x_0 + \frac{1-x_0^2}{1-x_0} \bigg] \bigg] \\ &= \frac{2}{4x_0^2} \Big[\Big(1 + x_0 + 1 - x_0 \Big) - \Big(1 - x_0 + 1 + x_0 \Big) \Big] \\ &= \frac{1}{2x_0^2} \Big(2 - 2 \Big) = 0 \end{split}$$

- Abbiamo visto che la forza elettrica è conservativa
 - Il lavoro che una forza meccanica in equilibrio con la forza elettrica compie su una carica non dipende dalla traiettoria ma solo dai punti di partenza e di arrivo

$$W_1 = \int_{C_1} \mathbf{F}_{\mathrm{m}} \cdot d\mathbf{s} \quad W_2 = \int_{C_2} \mathbf{F}_{\mathrm{m}} \cdot d\mathbf{s} \quad W_1 = W_2$$

ullet Ad ogni istante $F_{
m m}=-F_{
m el}$



- ullet Abbiamo inoltre visto che la forza elettrica è $egin{array}{c} {f F}_{
 m el} = q{f E} \end{array}$
- \bullet Quindi, indipendentemente dal percorso, per spostare una carica da A a B si compie un lavoro W_{BA}

$$\mathbf{W}_{BA} = \int_A^B \mathbf{F}_{\mathrm{m}} \cdot d\mathbf{s} = \int_A^B -q\mathbf{E} \cdot d\mathbf{s}$$

- Il lavoro meccanico che scompare può essere recuperato compiendo il percorso opposto
- \bullet Pertanto W_{BA} definisce l'energia potenziale U_{BA} che la carica q acquista nel campo elettrico ${\bf E}$ spostata da A a B

$$U_{BA} = -q \int_{A}^{B} \mathbf{E} \cdot d\mathbf{s}$$

- Il campo elettrico è generato da un sistema di cariche arbitrario
 - ullet La cosa importante è conoscere $\mathrm{E}(\mathrm{r})$
 - Il campo elettrico modifica lo spazio
- Analogamente all'introduzione del campo elettrico (forza per unità di carica) è conveniente definire una energia potenziale per unità di carica
 - Il potenziale elettrico

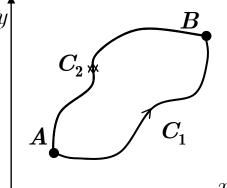
$$V_{BA} = rac{U_{BA}}{q} = -\int_A^B \mathbf{E} \cdot d\mathbf{s} \equiv V_B - V_A$$

- ullet Più correttamente V_{BA} è definito come differenza di potenziale fra B e A
- \bullet Naturalmente la proprietà dell'integrale di essere indipendente dal cammino vale anche per il campo elettrico E
 - Questa proprietà viene espressa dicendo che l'integrale lungo un cammino chiuso è nullo

$$\int_{C_1} \mathbf{E} \cdot d\mathbf{s} = \int_{C_2} \mathbf{E} \cdot d\mathbf{s} \qquad \int_{C_1} \mathbf{E} \cdot d\mathbf{s} - \int_{C_2} \mathbf{E} \cdot d\mathbf{s} = 0$$

$$-\int_{C_2} \mathbf{E} \cdot d\mathbf{s} = \int_{-C_2} \mathbf{E} \cdot d\mathbf{s} \qquad \int_{C_1} \mathbf{E} \cdot d\mathbf{s} + \int_{-C_2} \mathbf{E} \cdot d\mathbf{s} = 0$$

$$\oint \mathbf{E} \cdot d\mathbf{s} = 0$$



$$\oint \mathbf{E} \cdot d\mathbf{s} = 0$$

- L'equazione appena trovata stabilisce un'importantissima proprietà del campo elettrostatico
 - Il campo elettrostatico è conservativo
- Vedremo che questo non sarà più vero per campi variabili nel tempo
 - Induzione elettromagnetica
- Si tratta di una equazione integrale
 - La riscriveremo in forma differenziale
- È un caso particolare di una delle 4 equazioni di Maxwell
 - Nel caso statico (campi non variabili nel tempo)
 - Espressa in forma integrale
- Per finire le unità di misura del campo elettrico e del potenziale
 - ullet Dimensioni V: Energia per unità di carica
 - L'unità di misura è il Volt (V)
 - Dimensioni: E forza per unità di carica
 - L'unità di misura è il

$$[\mathbf{E}] = \mathbf{ML}\mathbf{T}^{-2}\mathbf{Q}^{-1}$$

 $[\mathbf{V}] = \mathbf{M} \mathbf{L}^2 \mathbf{T}^{-2} \mathbf{Q}^{-1}$

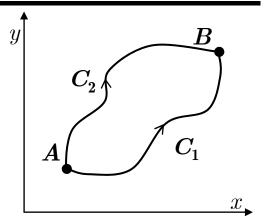
Volt/metro (V/m)

• Ricordiamo ancora l'equazione fondamentale

$$\int_{C_1} \mathbf{E} \cdot d\mathbf{s} = 0$$

$$\int_{C_2} \mathbf{E} \cdot d\mathbf{s} = \int_{C_2} \mathbf{E} \cdot d\mathbf{s}$$

• Il fatto che l'integrale dipenda solo dai punti A e B implica che deve esistere una funzione $\phi(\mathbf{r})$ tale che



$$-\int_{A}^{B} \mathbf{E} \cdot d\mathbf{s} = \phi(\mathbf{r}_{B}) - \phi(\mathbf{r}_{A})$$

- L'equazione precedente esprime anche la circostanza che solo differenze di potenziale hanno un senso fisico
 - Tuttavia si può decidere di associare ad ogni punto dello spazio il valore di una funzione scalare $\phi(\mathbf{r})$ (campo scalare) rispetto ad un potenziale arbitrario di un punto \mathbf{r}_A scelto come punto di riferimento

$$\phi(\mathbf{r}_B) = \phi(\mathbf{r}_A) - \int_A^B \mathbf{E} \cdot d\mathbf{s}$$

ullet Di solito il potenziale di riferimento $\phi(\mathbf{r}_A)$ è posto uguale a zero: $\phi(\mathbf{r}_A)=0$

- Chiariamo meglio questo punto
- ullet Calcoliamo la differenza di potenziale fra i punti ${f r}_1$ e ${f r}_2$

$$V_{21} = -\int_{\mathbf{r}_1}^{\mathbf{r}_2} \mathbf{E} \cdot d\mathbf{s}$$

- Possiamo scegliere una traiettoria arbitraria
 - Da r_1 a r_4 e successivamente da r_4 a r_2
- Otteniamo evidentemente

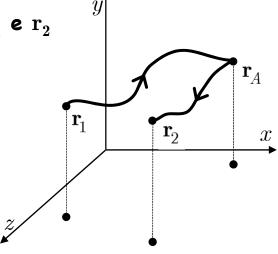
$$V_{21} = -\int_{\mathbf{r}_1}^{\mathbf{r}_2} \mathbf{E} \cdot d\mathbf{s} = -\int_{\mathbf{r}_1}^{\mathbf{r}_A} \mathbf{E} \cdot d\mathbf{s} - \int_{\mathbf{r}_A}^{\mathbf{r}_2} \mathbf{E} \cdot d\mathbf{s}$$

$$\phi(\mathbf{r}_{1}) = -\int_{\mathbf{r}_{A}}^{\mathbf{r}_{1}} \mathbf{E} \cdot d\mathbf{s} + \phi(\mathbf{r}_{A}) \qquad -\int_{\mathbf{r}_{1}}^{\mathbf{r}_{2}} \mathbf{E} \cdot d\mathbf{s} = \phi(\mathbf{r}_{A}) - \phi(\mathbf{r}_{1})$$

$$\phi(\mathbf{r}_{2}) = -\int_{\mathbf{r}_{A}}^{\mathbf{r}_{2}} \mathbf{E} \cdot d\mathbf{s} + \phi(\mathbf{r}_{A}) \qquad -\int_{\mathbf{r}_{A}}^{\mathbf{r}_{2}} \mathbf{E} \cdot d\mathbf{s} = \phi(\mathbf{r}_{2}) - \phi(\mathbf{r}_{A})$$

$$V_{21} = \phi(\mathbf{r}_{A}) - \phi(\mathbf{r}_{1}) + [\phi(\mathbf{r}_{2}) - \phi(\mathbf{r}_{A})] \qquad V_{21} = \phi(\mathbf{r}_{2}) - \phi(\mathbf{r}_{1})$$

• È evidente che il risultato è indipendente dal valore del potenziale di riferimento
$$\phi(\mathbf{r}_A)$$



 $-\int_{\mathbf{r}}^{\mathbf{r}_{A}}\mathbf{E}\cdot d\mathbf{s} = \phi(\mathbf{r}_{A}) - \phi(\mathbf{r}_{1})$

- Illustriamo i concetti appena introdotti con un esempio
 - ullet Il potenziale di una carica puntiforme q
- Abbiamo visto che il campo elettrico di una carica puntiforme è

$$\mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2} \hat{\mathbf{r}}$$

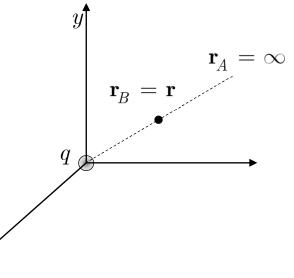
- Calcoliamo il potenziale rispetto ad un punto all'infinito per il quale assumiamo che il potenziale sia nullo
 - Scegliamo una traiettoria semplice: radiale
 - Abbiamo già fatto questo calcolo

$$\phi(\mathbf{r}_{B}) = -\int_{A}^{B} \mathbf{E} \cdot d\mathbf{s} + \phi(\mathbf{r}_{A})$$

$$\phi(\mathbf{r}) = -\int_{\infty}^{r} \frac{1}{4\pi\varepsilon_{0}} \frac{q}{r^{2}} \hat{\mathbf{r}} \cdot d\mathbf{s} + \phi(\infty) = \frac{q}{4\pi\varepsilon_{0}} \int_{r}^{\infty} \frac{dr}{r^{2}}$$

$$= \frac{q}{4\pi\varepsilon_{0}} \left[-\frac{1}{r} \right]_{r}^{\infty} = \frac{q}{4\pi\varepsilon_{0}} \frac{1}{r}$$

$$\phi(r) = \frac{q}{4\pi\varepsilon_{0}} \frac{1}{r}$$



Energia potenziale

• Sottolineiamo che il potenziale è stato definito come l'energia potenziale per unità di carica

• Pertanto se $\phi(\mathbf{r})$ è il potenziale generato dalla carica q_1 posta nell'origine

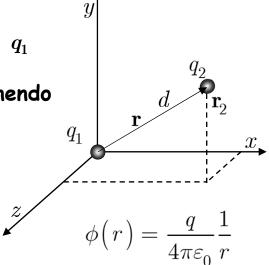
• L'energia potenziale del sistema che si ottiene ponendo una carica q_2 in \mathbf{r}_2 (a distanza d dall'origine) è

$$U_{12}\,=\,q_2\phi\left(\,\mathbf{r}_{\!_{2}}\,\right)=\,q_2\,\frac{q_1}{4\pi\varepsilon_0}\frac{1}{d}$$

- ullet Questo ragionamento può essere esteso a N cariche
 - L'energia potenziale del sistema si trova sommando l'energia potenziale di tutte le coppie

$$U_N = \frac{1}{2} \sum_{i \neq j=1}^{N} \frac{q_i q_j}{4\pi \varepsilon_0} \frac{1}{r_{ij}}$$

- Il fattore ½ tiene conto che nella somma ogni termine compare 2 volte
- ullet Infine, tornando all'energia U_{12} notiamo che essa rappresenta il lavoro che è stato fatto dalla forza esterna per portare la carica dall'infinito a d
 - ullet È anche il lavoro che farebbe la forza elettrica per portare la carica da d all'infinito



Energia potenziale

- ullet Notiamo che se le cariche hanno lo stesso segno U_{12} è positiva
 - Se le cariche hanno lo stesso segno la forza è repulsiva
 - ullet Nello spostamento da d all'infinito il campo elettrico compie lavoro sul sistema esterno
 - Cede energia
- ullet Viceversa, se le cariche hanno segno opposto U_{12} è negativa
 - Se le cariche hanno segno opposto la forza è attrattiva
 - ullet Nello spostamento da d all'infinito il campo elettrico "assorbe" lavoro dal sistema esterno
 - Assorbe energia

- Come nel caso del campo elettrico, noto il valore e la posizione delle cariche che compongono un sistema elettrostatico il potenziale può essere facilmente calcolato
 - Utilizzando il principio di sovrapposizione

$$\mathbf{E}(\mathbf{r}_0) = \frac{1}{4\pi\varepsilon_0} \sum_{j=1}^{N} \frac{q_j}{\left|\mathbf{r}_0 - \mathbf{r}_j\right|^2} \hat{\mathbf{r}}_{0j} \qquad \qquad V(\mathbf{r}_0) = \frac{1}{4\pi\varepsilon_0} \sum_{j=1}^{N} \frac{q_j}{\left|\mathbf{r}_0 - \mathbf{r}_j\right|}$$

- Notiamo che il calcolo del potenziale è meno laborioso del calcolo del campo elettrico
 - È una funzione scalare; ha una sola componente
- Infine sottolineiamo che stiamo considerando un sistema in cui le posizioni delle cariche sono fisse
- \bullet Analogamente, se abbiamo un sistema in cui la carica ha una distribuzione continua $\rho({\bf r})$

$$V(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int_{V} \frac{\rho(\mathbf{r}')d^3\mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|}$$