Elettromagnetismo

Prof. Francesco Ragusa Università degli Studi di Milano

28. 09.2022

- In questo corso tratteremo argomenti quali
 - Carica elettrica: forze fra cariche a riposo: elettrostatica
 - Correnti elettriche stazionarie: forze magnetiche: magnetostatica
 - Campi elettrici e magnetici nella materia
 - Induzione elettromagnetica
 - Equazioni di Maxwell. Onde elettromagnetiche: elettrodinamica
 -
- Incontreremo nuove grandezze fisiche, nuovi concetti
 - La carica elettrica e la sua conservazione
 - Analisi del concetto di azione a distanza e il concetto di campo
 - Le trasformazioni delle grandezze elettromagnetiche fra sistemi inerziali
 - La Teoria della Relatività Ristretta
 -
- Avremo bisogno di strumenti matematici avanzati
 - Analisi vettoriale: calcolo integrale e calcolo differenziale
 - Gradiente, Rotore, Divergenza, Laplaciano; Teoremi vari
 - Equazioni differenziali alle derivate parziali
 - Trasformate di Fourier
 -

- Si tratta di un corso lungo e complesso
 - È un corso fondamentale nella formazione di un fisico
 - Richiede l'uso di matematica avanzata ma allo stesso tempo la capacita di distinguere fra la matematica e la fisica
 - È indispensabile acquisire la capacità di risolvere problemi
 - La capacità di risolvere problemi dipende in modo essenziale dal riuscire a formulare un modello fisico del sistema e del problema proposto
 - Solo dopo aver definito e capito il modello si può capire quali leggi (e quali formule) vanno usate
 - Separare lo studio della parte "teorica" dalla parte "applicativa degli esercizi" è un grave errore
- Il corso assorbirà molto del vostro tempo di questo anno
 - Usate i docenti del corso per rendere più efficiente il vostro studio
 - Chiedete durante le lezioni o dopo, o durante le ore di ricevimento
 - Superate la paura di fare cattiva figura o di venire giudicati male
 - Ripeto: è un corso complesso ed è normale che si incontrino tantissime cose che non si sanno o che si sono sottovalutate al primo anno

• Il corso prevede tre lezioni settimanali

Mercoledì 8:30-10:30 Esercitazione Prof. Giancarlo Maero
 Giovedì 10:30-12:30 Lezione Prof. Francesco Ragusa
 Venerdì 11:30-13:30 Lezione Prof. Francesco Ragusa

• Il corso prevede in totale 15 CFU

10 CFU di lezioni:
5 CFU di esercitazioni
60 ore
30 settimane

- Cercheremo di rimanere entro le 13+13 settimane dei due semestri
- Ci sarà una pausa nelle lezioni nel periodo degli appelli invernali
- Il corso è annuale. L'esame finale verterà su tutto il programma del corso
 - Gli appelli inizieranno nella sessione estiva
 - 6 appelli in totale secondo il calendario ufficiale
 - Verrà reso noto appena il collegio didattico fisserà le date
 - L'esame consiste di uno scritto e di un orale
 - Lo scritto vale solo per l'appello di esame a cui si riferisce

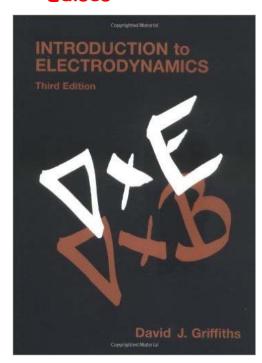
Giugno, Luglio: 2 appelliSettembre: 1 appello

Novembre: 1 appello (straordinario)

• Gennaio, Febbraio: 2 appelli

- Nello studio di questo corso (ma anche di altri ...) riteniamo importante
 - Studiare e fare esercizi mentre si frequentano le lezioni
 - Non considerare separate "Teoria" ed "Esercitazioni"
- Quest'anno non faremo le prove in itinere
 - Sono state un fallimento
 - Solo tre studenti lo scorso anno
- Tuttavia riteniamo importante avere un momento di verifica intermedio
 - In gennaio una prova scritta con autovalutazione guidata
 - La faremo in gennaio
 - La prova verterà sul programma del primo semestre
 - I compiti saranno risolti in aula
 - Verranno forniti i criteri per l'autovalutazione
 - Se arriverete ad una autovalutazione negativa dovrete capire dove state sbagliando
 - Saremo a vostra disposizione con il ricevimento
 - Per discutere il vostro risultato
 - Aiutarvi a correggere eventuali errori nello studio

Ore di studio

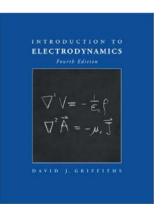

- 1 CFU lezione
 - 8 ore di lezione
 - 17 ore di studio
- 1 CFU esercitazioni
 - 12 ore di esercitazioni in aula
 - 13 ore di studio
- 60 CFU pari circa a 480 ore di lezione
 - 120 giorni di lezione a 4 ore al giorno
 - 24 settimane 5 giorni settimane
- 60 CFU pari a 1020 ore di studio
 - 255 giorni 4 ore di studio al giorno, oltre le lezioni
 - 4 ore al giorno per tutto l'anno esclusi i sabati e le domeniche
- Molto intenso ... forse troppo ... sono le disposizioni ministeriali
- Il corso di elettromagnetismo
 - 10 CFU Lezioni pari a 170 ore di studio
 - 5 CFU di esercitazioni pari a 65 ore di studio con esercizi

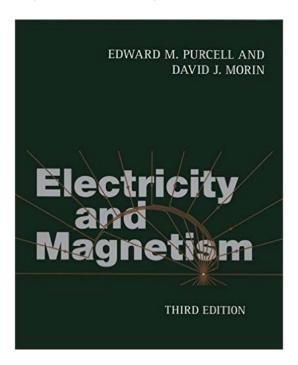
Rimandare l'esame?

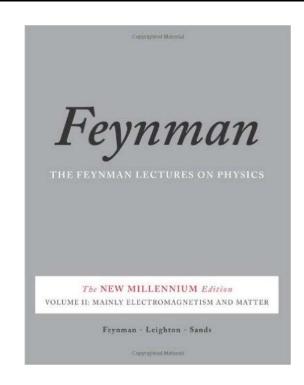
N	Matricola	SCRITTO	SCRITTO FINALE		
1	811XXX	SUFF RES			
2	811XXX	19	RES		
3	828XXX	INS	RES		
4	830XXX	INS	RES	214	
5	832XXX	24	27	214	
6	832XXX	SUFF	RIT		
7	835XXX	INS	RES		
8	848XXX	INS	RES		
9	866XXX	INS	RES		
10	867XXX	INS	RES		
11	867XXX	21	25		
12	867XXX	INS	RES	2015	
13	867XXX	INS	RES		
14	872XXX	18	RES		
15	875XXX	INS	RES		
16	885XXX	18	RIT		
17	886XXX	INS	RES		
18	886XXX	INS	RES	2016	
19	886XXX	19	24	2016	
20	887XXX	21	18		
21	891XXX	18	22		
22	907XXX	18	RIT		
23	907XXX	28	30		
24	907XXX	27	30L		
25	908XXX	INS	RES		
26	912XXX	21	26		
27	912XXX	INS	RES	2047	
28	916XXX	25	30	2017	
29	916XXX	24	25		
30	916XXX	INS	RES		
31	918XXX	21	25		
32	918XXX	23	23		
33	919XXX	27	27		

N	Matricola	SCRITTO FINALE		
1	828XXX	INS	RES	
2	830XXX	INS	RES	
3	832XXX	INS	RES	2014
4	848XXX	INS	RES	
5	850XXX	INS	RES	
6	866XXX	24	23.0	
7	867XXX	INS	RES	
8	867XXX	INS	RES	2015
9	872XXX	INS	RES	
10	877XXX	INS	RES	
11	885XXX	25	27.0	
12	885XXX	INS	RES	
13	885XXX	19	25.0	
14	885XXX	20	27.0	2016
15	885XXX	INS	RES	
16	886XXX	INS	RES	
17	886XXX	INS	RES	
18	903XXX	19	23.0	
19	903XXX	29	30L	
20	907XXX	SUFF	RIT	
21	907XXX	SUFF	RIT	
22	907XXX	19	27.0	2047
23	908XXX	SUFF	RIT	2017
24	908XXX	27	30.0	
25	912XXX	INS	RES	
26	916XXX	29	26.0	
27	916XXX	24	26.0	

- Libri di testo
 - P. Mazzoldi M. Nigro C. Voci Fisica Volume II Edises


David Griffiths
 Introduction to electrodynamics, third ed.
 Prentice Hall; 3rd edition (1999)


Fisica Elettromagnetismo e Onde



- David Griffiths
 Introduction to electrodynamics, fourth ed.
 - Pearson; 4th ed. (2012)
- Sembra che contenga molti errori
- Cambridge; 4th ed. (2017)
- Sembra OK

- Libri per consultazione
 - Richard P. Feynman
 The Feynman Lectures on Physics, Vol. II varie edizioni; di recente
 Basic Books; New Millennium edition (2011)
 - Edizione online ad accesso libero
 - http://www.feynmanlectures.caltech.edu/

 Edward M. Purcell, David J. Morin Electricity and Magnetism, third edition Cambridge University Press;
 3 edizione (21 gennaio 2013)

- Le diapositive del corso sono disponibili in formato PDF
 - Consultare l'indirizzo
 - http://www.mi.infn.it/~ragusa/2022-2023/elettromagnetismo/
 - Sono disponibili le diapositive dello scorso anno
 - http://www.mi.infn.it/~ragusa/2021-2022/elettromagnetismo/
 - Le diapositive saranno disponibili PRIMA della lezione
 - Cercherò di rendere disponibili le diapositive delle due lezioni
- Le lezioni devono essere seguite in presenza
 - Tuttavia le lezioni saranno registrate
 - Allo stesso indirizzo, nella directory /registrazioni, dopo la lezione, sarà disponibile un file in formato mp4 che contiene la registrazione della lezione
- Potete avere un colloquio con noi in qualsiasi momento
 - Fissare un appuntamento via e-mail
 - Francesco.Ragusa@unimi.it, Giancarlo.Maero@unimi.it
- Ribadisco
 - UTILIZZATE la possibilità di colloquio con i docenti
 - La materia è complessa, è normale non capire subito alcune cose
 - Non abbiate timore di essere giudicati

Alfabeto greco

α	A	alfa	ι	Ι	iota	ρ	Р	rho
$\ \beta\ $	В	beta	κ	K	kappa	σ	\sum	sigma
$\ \gamma\ $	Γ	gamma	λ	Λ	lambda	$\mid au$	T	tau
δ	Δ	delta	μ	M	mu/mi	v	Y	upsilon
$\ \varepsilon\ $	\mathbf{E}	epsilon	ν	N	nu/ni	ϕ	Φ	fi
ζ	Z	zeta	ξ	[1]	xi	χ	X	chi
$\ \eta\ $	Η	eta	0	O	omicron	ψ	Ψ	psi
θ	Θ	theta	π	Π	pi	ω	Ω	omega

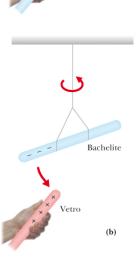
Elettromagnetismo

Prof. Francesco Ragusa Università degli Studi di Milano

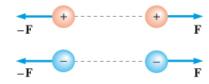
Lezione n. 1 - 28.09.2022

Struttura elettrica della materia Elettrostatica. Legge di Coulomb

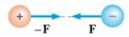
La Forza Elettrica


- La Forza Elettrica si manifesta in fenomeni noti fino da tempi molto antichi
 - Oltre lo spettacolare fenomeno del fulmine erano noti agli antichi scienziati greci altri fenomeni interessanti
 - Elettrificazione di oggetti mediante strofinamento
 - Forze attrattive e forze repulsive
 - La stessa parola elettricità deriva dalla parola $\eta \lambda \varepsilon \kappa \tau \rho o \nu$ (electron) che in greco significa ambra, uno dei primi materiali studiati e che può essere facilmente elettrificato
 - Solo in tempi relativamente recenti si è scoperto che moltissimi altri fenomeni di cui abbiamo esperienza quotidiana sono dovuti alla forza elettrica
 - Dal congelamento dell'acqua al battito cardiaco
 - Gli scienziati del XIX secolo (Ampere, Faraday, Maxwell ...) hanno formulato la teoria dell'elettromagnetismo come la conosciamo oggi
 - La teoria dell'elettromagnetismo ha poi condizionato gli studi di chimici e fisici che hanno scoperto la struttura della materia
- Non seguiremo la storia dell'elettricità
 - Inizieremo dai risultati degli studi di Coulomb della seconda metà del '700

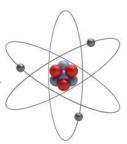
L'Elettromagnetismo Classico

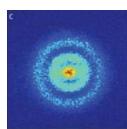

- In questo corso studieremo l'elettromagnetismo classico
 - La parola "classico" è intesa nel senso di "non quantistico"
 - L'Elettromagnetismo Classico che studieremo è in pratica la formulazione di Maxwell della metà del 1800, prima dell'avvento della meccanica quantistica
 - La teoria di Maxwell è sopravvissuta piuttosto bene alla rivoluzione della meccanica quantistica
 - L'Elettromagnetismo Classico non ha richiesto revisioni neppure a seguito dell'introduzione della Teoria della Relatività Ristretta
 - Piuttosto, storicamente, è stata la Teoria della Relatività Ristretta che è nata dall'Elettromagnetismo Classico
 - Le Equazioni Maxwell, formulate prima del lavoro di Lorentz e di Einstein, sono già compatibili con la Teoria della Relatività Ristretta
- L'Elettromagnetismo Classico non ha richiesto modifiche sostanziali fino a distanze dell'ordine di $10^{-12}~{
 m m}$, circa $1/100~{
 m della}$ dimensione dell'atomo
 - Per distanze inferiori è necessaria una teoria che fonda l'elettromagnetismo con i principi della meccanica quantistica
 - Elettrodinamica Quantistica, una delle teorie più precise mai formulate
 - Teoria Quantistica dei Campi $g-2 = \begin{cases} 0.002 \ 331 \ 841 \ 21 \pm 0.000 \ 000 \ 000 \ 82 & \text{esperim.} \\ 0.002 \ 331 \ 836 \ 20 \pm 0.000 \ 000 \ 000 \ 86 & \text{teoria} \end{cases}$

- Come già accennato, uno dei primi fenomeni legati all'elettricità che ha attratto l'attenzione dell'uomo è l'elettrificazione per strofinamento
 - Esistono delle sostanze (oggi classificate come isolanti) che, se sottoposte a strofinamento, ad esempio con un panno, esibiscono la capacità di attrarre o respingere altri oggetti
- Ad esempio, due barrette di bachelite strofinate con un panno si caricano e si respingono


• Una barretta di bachelite e una di vetro strofinate con un panno si caricano e si attraggono

- Questi esperimenti mostrano alcuni fatti importanti
 - Esiste una forza fondamentale
 - Oltre alla forza gravitazionale
 - Oggi aggiungiamo oltre alla forza debole e alla forza nucleare forte
 - Questa forza può essere attrattiva o repulsiva
 - La sorgente di questa forza è la carica elettrica
 - La carica elettrica può essere positiva o negativa
 - Due cariche dello stesso segno si respingono




• Due cariche di segno opposto si attraggono

- La distinzione fra positivo e negativo è arbitraria
 - Non c'è nulla di intrinsecamente positivo o negativo
 - È solo la distinzione fra i due tipi di carica osservati in natura
- Gli esperimenti di elettrificazione si comprendono facilmente se si assume un semplice modello sulla struttura della materia

- La materia è composta di atomi
 - L'atomo è composto da un nucleo dove risiede la carica positiva e da elettroni, dotati di carica negativa, che formano un stato legato con il nucleo

- In termini classici, inesatti e anche inconsistenti, si direbbe che "orbitano" intorno al nucleo
- Il nucleo è a sua volta composto da protoni (carichi positivamente) e da neutroni (neutri); neutroni e protoni sono detti nucleoni
 - ullet La carica elettrica del protone q_p e la carica elettrica dell'elettrone q_e sono perfettamente uguali in valore assoluto

$$q_p = +e$$
 $q_e = -e$ $e = 1.602 \times 10^{-19} \text{C}$

- Un atomo è indicato con un simbolo chimico X(H, C, O, U)
- Un atomo è indicato con un simpoio crimines -- . Vengono anche indicati il numero dei nucleoni A (numero di massa) . Zimpolo al numero dei protoni $\begin{pmatrix} Z & X & {}^6 & C \end{pmatrix}$
 - L'atomo è neutro
 - La notazione è ridondante
 - ullet Le proprietà chimiche (e quindi il simbolo X) sono determinate da Z

• La massa di neutroni e protoni è molto simile

$$m_p = 1.6726 \times 10^{-27} \text{ Kg}$$
 $m_n = 1.6749 \times 10^{-27} \text{ Kg}$

$$m_N \approx 1.67 \times 10^{-27} \, \mathrm{Kg}$$

• La massa degli elettroni è circa 1800 volte più piccola

$$m_e = 9.1094 \times 10^{-31} \,\mathrm{Kg}$$

- In pratica la massa di un atomo è determinata dalla massa del nucleo e in definitiva dal numero di nucleoni A
- La dimensione di un atomo è determinata dalla dimensione della regione occupata dagli elettroni
 - Dalla "dimensione" delle orbite degli elettroni

$$R_{Atomo} \sim 10^{-10} \mathrm{m}$$

• La dimensione del nucleo è notevolmente inferiore

$$R_{Nucleo} \sim 10^{-15} \mathrm{m}$$

• Gli elettroni sono particelle puntiformi

$$R_{elettrone} \sim 0$$

• I nucleoni hanno una dimensione

$$R_{protone} \sim 10^{-15} \, \mathrm{m}$$

• Per i nostri scopi possiamo considerare anche i nucleoni puntiformi

- ullet Quanti elettroni ci sono in 1 $m cm^3$ di materia ... diciamo 1 $m cm^3$ di acqua ?
- Iniziamo con una sostanza molto semplice, l'idrogeno ${}^1_1 H$
 - Approssimiamo la massa di un atomo di idrogeno con quella del protone
 - Trascuriamo la massa dell'elettrone e la correzione derivante dall'energia di legame
 - L'energia di legame atomica è trascurabile
 - L'energia di legame del nucleo ha un piccolo effetto (non per 1_1H)
 - Per definizione, una mole di idrogeno monoatomico pesa un grammo

$$\begin{split} m_p &= 1.67 \times 10^{-27} \, \mathrm{Kg} & N_A = 6.022 \times 10^{23} \\ M_H &= N_A \times m_p = 1.67 \times 10^{-27} \times 6.022 \times 10^{23} = 1.006 \times 10^{-3} \, \mathrm{Kg} \approx 1 \, \mathrm{g} \end{split}$$

- ullet Quindi una mole di sostanza di numero di massa A pesa A grammi
- Inoltre, se una sostanza ha densità ho $m g/cm^3$ allora ho/A (A grammi di sostanza) dice quante moli ci sono per $m cm^3$
 - ullet Notiamo che dimensionalmente A in questa formula rappresenta una massa
- ullet Per ottenere il numero di atomi per ${
 m cm^3}$ basta moltiplicare il numero di moli per ${
 m cm^3}$ per il numero di Avogadro
- ullet Per finire, se l'atomo ha Z elettroni
 - ullet Notiamo che per nuclei non molto pesanti Z/Approx 1/2

$$\rho_{atomi} = \frac{\rho}{A} N_A$$

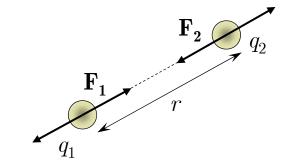
$$\left| \rho_{elettroni} = Z \frac{\rho}{A} N_A \right|$$

- Tornando alla domanda iniziale, la densità di elettroni nell'acqua
 - Il peso atomico della molecola d'acqua è ${
 m H_2O}$ A=16+2=18
 - Il numero degli elettroni Z=8+1+1=10
 - La densità dell'acqua è $1~{
 m g/cm^3}$

$$\rho_{elettroni} = Z \frac{\rho}{A} N_A = 10 \frac{1}{18} 6.022 \times 10^{23} = 3.35 \times 10^{23} \text{ el. / cm}^3$$

- Si tratta di un numero estremamente elevato
- A livello macroscopico, trattare la carica della materia come una grandezza che varia in modo continuo e non discreto è un'ottima approssimazione
- ullet Consideriamo un cubo di lato $1~\mu m$
 - Un volume estremamente piccolo su scala macroscopica
 - 1 cm = $10^4 \, \mu m$
 - $1 \ \mu m^3 = 10^{-12} \ cm^3$
 - ullet Un'ottima approssimazione di volume infinitesimo dv=dxdydz
 - ullet Contiene comunque un numero enorme di elettroni $ho_{elettroni}=3.35 imes10^{11}~el.\,/~\mu\mathrm{m}^3$

- La materia è composta di atomi tenuti insieme da forze elettriche ed effetti quantistici
- Sotto opportune condizioni lo strofinamento di due sostanze diverse o addirittura il loro semplice contatto provoca il passaggio di elettroni da una sostanza all'altra



- La sostanza che perde elettroni diventa carica positivamente
- La sostanza che acquista elettroni diventa carica negativamente
- Queste semplici considerazioni permettono di comprendere qualitativamente gli antichi esperimenti dell'elettrificazione della materia

- L'interazione fra le cariche elettriche a riposo è descritta dalla Legge di Coulomb
 - I risultati degli studi di Coulomb sono
 - Le cariche hanno due segni, convenzionalmente segno positivo e segno negativo
 - Le forze sono dirette lungo la linea congiungente le due cariche
 - Cariche di segno uguale si respingono
 - Cariche di segno opposto si attraggono
 - Il modulo della forza è proporzionale al prodotto delle due cariche (modulo)
 - Il modulo della forza è inversamente proporzionale al quadrato della distanza
 - Il modulo della forza è

$$|\mathbf{F}_1| = |\mathbf{F}_2| = k \frac{|q_1 q_2|}{r^2}$$

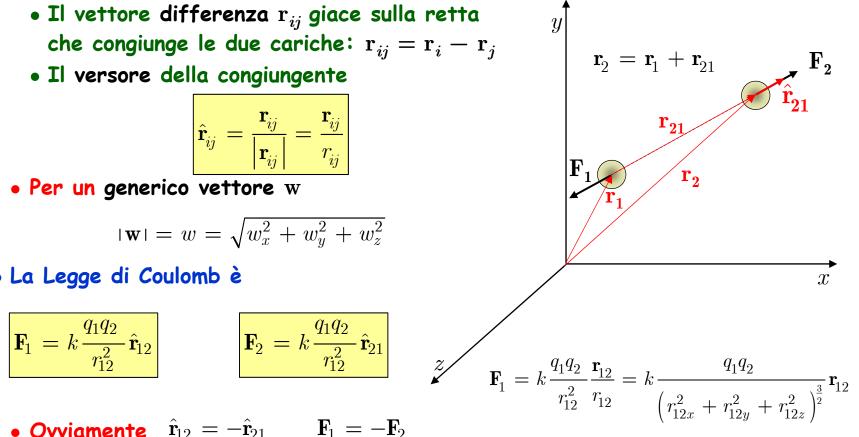
stiamo supponendo che le dimensioni delle cariche siano trascurabili rispetto a r

- ullet Le forze obbediscono alla terza legge di Newton: ${f F}_1=-{f F}_2$
- ullet Discuteremo fra breve la costante k

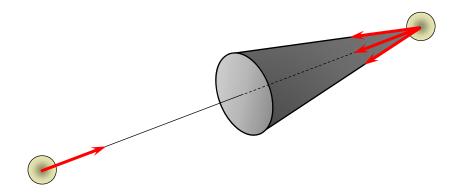
- Esprimiamo la Legge di Coulomb in forma vettoriale
 - Introduciamo un sistema di coordinate
 - ullet I vettori posizione delle due cariche ${f r_1}$ e ${f r_2}$
 - ullet Il vettore differenza \mathbf{r}_{ij} giace sulla retta che congiunge le due cariche: $\mathbf{r}_{ij} = \mathbf{r}_i - \mathbf{r}_j$
 - Il versore della congiungente

$$\hat{\mathbf{r}}_{ij} = rac{\mathbf{r}_{ij}}{\left|\mathbf{r}_{ij}
ight|} = rac{\mathbf{r}_{ij}}{r_{ij}}$$

• Per un generico vettore w


$$|\mathbf{w}| = w = \sqrt{w_x^2 + w_y^2 + w_z^2}$$

La Legge di Coulomb è


$$\mathbf{F}_1 = k \frac{q_1 q_2}{r_{12}^2} \hat{\mathbf{r}}_{12}$$

$$\mathbf{F}_2 = k \frac{q_1 q_2}{r_{12}^2} \hat{\mathbf{r}}_{21}$$

ullet Ovviamente $\hat{f r}_{12}=-\hat{f r}_{21}$ $f F_1=-{f F}_2$

- Il fatto che la forza di Coulomb sia diretta lunga la retta che passa per le posizioni delle due cariche è conseguenza dell'isotropia dello spazio
 - Consideriamo la forza fra due cariche come prevista dalla legge di Coulomb

- Qualsiasi altra direzione violerebbe l'isotropia dello spazio
- Infatti, se la forza fosse diretta in un'altra direzione arbitraria ...
- ... esisterebbero infinite altre direzioni possibili tutte equivalenti
 - Differenti per una rotazione intorno alla congiungente
- Ma una legge fisica deve individiduare una sola direzione
- Se la forza fosse diretta lungo una sola delle infinite direzioni equivalenti allora esisterebbe una direzione privilegiata nello spazio
 - Lo spazio non sarebbe isotropo

- ullet La costante k dipende dal sistema di unita di misura
 - Dipende anche dalle proprietà del mezzo che separa le cariche
 - Per il momento supponiamo che le cariche siano nel vuoto
- Utilizzeremo il Sistema Internazionale di unita di misura (SI)
 - Nel Sistema Internazionale la carica elettrica è una grandezza fisica fondamentale
 - La sua unita di misura è il Coulomb
- Nel Sistema Internazionale la costante k vale

$$egin{array}{lll} Tempo & T & s \\ Lunghezza & L & m \\ Massa & M & Kg \\ Carica & Q & C \\ \end{array}$$

 $e = 1.602 \cdot 10^{-19} \text{ C}$

$$k = 8.988 \cdot 10^9 \, \frac{\text{Nm}^2}{\text{C}^2}$$

- La carica elementare (carica dell'elettrone) è
- ullet La costante k viene ridefinita nel modo seguente

$$k = \frac{1}{4\pi\varepsilon_0} \qquad \varepsilon_0 = 8.854 \cdot 10^{-12} \frac{\mathrm{C}^2}{\mathrm{Nm}^2}$$

- La costante ε_0 prende il nome di costante dielettrica del vuoto o permettività elettrica del vuoto (o anche permittività)
- Il fattore 4π semplifica alcune equazioni: ad esempio la legge di Gauss