Chapter 10

The Electromagnetic Interaction

In this chapter we will examine the electroweak interaction of the standard model,
and, in particular, the electromagnetic part of it. We relegate the weak part to the
next chapter. The electromagnetic interaction is important in subatomic physics
for two reasons. First, it enters whenever a charged particle is used as a probe.
Second, it is the only interaction whose form can be studied in classical physics,
and it provides a model after which other interactions can be patterned.

Without at least some approximate computations, interactions cannot be under-
stood. In the simplest form, such computations are based on quantum mechanical
perturbation theory and, in particular, on the expression for the transition rate
from an initial state « to a final state (:

Who = 22 (5] Himg 1) 2 (D). (10.1)

““h
Fermi called this expression the golden rule, because of its usefulness and impor-
tance. In Section 10.1 we shall derive this relation; in Section 10.2, we shall discuss
the density-of-states factor p(F). Readers who are familiar with these topics can
omit these two sections.

10.1 The Golden Rule

Consider a system that is described by a time-independent Hamiltonian Hy; its
Schrodinger equation is

)
ma_‘f = Hoyp. (10.2)

The stationary states of this system are found by inserting the ansatz,

—iE,t
© = up(x) exp ( lh ) (10.3)
into Eq. (10.2). The result is the time-independent Schrédinger equation
Hyu,, = E,u,. (10.4)
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For the further discussion it is assumed that this equation has been solved, that the
eigenvalues E,, and the eigenfunctions u,, are known, and that the eigenfunctions
form a complete orthonormal set, with

/d3xu}‘v(w)un(w) = Onn. (10.5)

If the system is produced in one of the eigenstates u,, it will remain in that state
forever and no transitions to other states will occur.
We next consider a system that is similar to the one just discussed, but its

Hamiltonian, H, differs from Hy by a small term, the interaction Hamiltonian,
Hintv

H = Hy + Hip.

The state of this system can, in zeroth approximation, still be characterized by the
energies F,, and the eigenfunctions u,. It is still possible to form the system in a
state described by one of the eigenfunctions u,,, and we shall call a particular initial
state |a).

However, such a state will in general no longer
be stationary; the perturbing Hamiltonian Hiy

. " . I la>
will cause transitions to other states, for instance,
|3). In the following we shall derive an expres- v
sion for the transition rate |o) — |3). Two exam-
ples of such transitions are shown in Fig. 10.1. In >
Fig. 10.1(a), the interaction is responsible for the
decay of the state via the emission of a photon. (a)

In Fig. 10.1(b), an incident particle in state |a) is
scattered into the state |3).

To compute the rate for a transition, we use the
Schrédinger equation,

oy

>

Hi.nt (b)

To solve this equation, v is expanded in terms of
the complete set of unperturbed eigenfunctions, Figure 10.1: The interaction
Eq (10 3). Hamiltonian Hj,¢ is respon-
' o sible for transitions from the
_iEt unperturbed eigenstate |a) to
P = an(t)un exp ( n ) 10.7 the unperturbed eigenstate

> oy exo (= to7) e

The coefficients a,,(t) generally depend on time and |a,(t)|? is the probability

of finding the system at time ¢ in state n with energy F,. Inserting ¢ into the
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Schrodinger equation gives (a,, = day,/dt)
—iE,t —iE,t
ihzn:dnun exp ( lh ) + ;Enanun exp ( lh )
—iE,t
= Zan(Ho + Hipt )uy, €xp ( Zh ) )

With equation (10.4), the second term on the left-hand side and the first term on
the right-hand side cancel. Multiplying by u} from the left, integrating over all
space, and using the orthonormality relation, produce the result

i(En — En)t} .

than = Z<N|Him|n)an exp [ -

n

(10.8)

Here, a convenient abbreviation for the matrix element of Hj, has been introduced:
(N|Hint|n) = /d3xu}‘\, (z)Hingun (). (10.9)

The set of relations (10.8) for all N is equivalent to the Schrédinger equation (10.6)
and no approximation is involved.

A useful approximate solution of Eq. (10.8) is obtained if it is assumed that
the interacting system is initially in one particular state of the unperturbed system
and if the perturbation Hiy is weak. In Fig. 10.1, the initial state is |a); it can,
for instance, be a well-defined excited level. In terms of the expansion (10.7), the
situation is described by

aq(t) =1, all other a,(t) =0, fort < tp. (10.10)

Only one of the expansion coefficients is different from zero; all others vanish. The
assumption that the perturbation is weak means that, during the time of obser-
vation, so few transitions have occurred that the initial state is not appreciably
depleted, and other states are not appreciably populated. In lowest order it is then
possible to set

ag(t) =1, an(t) <1, n#a, allt. (10.11)

Equation (10.8) then simplifies to

N = (i)~ (N Hine|0) exp {M] .

h

If Hiy is switched on at the time ¢ty = 0 and is time-independent thereafter, inte-
gration, for N # a, gives

an(T) = (ih)~(N|Hilo) [ e [M}
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or

an(T) = % {1 — exp [M} } . (10.12)

The probability of finding the system in the particular state IV after time T is given
by the absolute square of ay(7'), or

,sin?[(Ex — E,)T/2h]

PNa(T) — |U«N(T)|2 = 4|<N|Hint|a>| (EN — Ea)Q

. (10.13)

If the energy En is dif-
ferent from F,, then
the factor (Ey — E,) ™2
depresses the transition
probability so much that
transitions to the corre-
sponding states can be
neglected for large times
T. However, there may
be a group of states with
energies Fny ~ FE,, such
as shown in Fig. 10.2(a),
for which the matrix el-
ement (N|Hin|o) is al-
most independent of N.

This case occurs, for in- Figure 10.2: (a) Transitions occur mainly to states with ener-
stance, if the states N lie gies En that are close to the initial energy Fo. (b) Transition

. . robability as a function of the energy difference En — Fq.
in the continuum. P Y &y N a

To express the fact that the matrix element is assumed to be independent of
N, it is written as (8|Hint|e). The transition probability is then determined by
the factor sin?[(Exy — FEo)T/2h](Ex — Eo)~2, and it is shown in Fig. 10.2(b). The
transition probability is appreciable only within the energy region

Eo—AEto E,+AE, AE= 2%71 (10.14)

As time increases, the spread becomes smaller: within the limits given by the
uncertainty relation, energy conservation is a consequence of the calculation and
does not have to be added as a separate assumption.

Equation (10.13) gives the transition probability from one initial state to one
final state. The total transition probability to all states Fn within the interval
(10.14) is the sum over all individual transitions.

P =3 Py = 418l 3 SN Do T2, (10.15)
N N
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where it has been assumed that the matrix element is independent of N. This
assumption is good as long as AE/E, is small compared to 1. With Eq. (10.14),
the condition becomes

2Lh N 4 x 1072 MeV-sec
E, = Eq(in MeV)

T > (10.16)

where T is the time of observation. In most experiments, this condition is satisfied.

Now we return to the original
problem, shown, for instance,
in Fig. 10.1(a). Here, the en-
ergy in the initial state is well
defined, but in the final state,
the emitted photon is free and E(N)  Photon
can have an arbitrary energy Particle Particle
(Fig. 10.3). The discrete en-

ergy levels En of Fig. 10.2(a) a
consequently are replaced by

a continuum. This fact is ex-

Continuum

pressed by writing the energy

as E(N). N now labels the

energy levels of the photon o _— — e

in the continuum, and it is a Initial state h Fimal <tate g

continuous variable. The to-

tal transition probability fol- Figure 10.3: In the initial state the subatomic particle is in
X the excited state a, and no photon is present. In the final

lows from Eq' (10'15) if the state, the subatomic system is in state [, and a photon

sum is replaced by an integral,  with energy E(N) has been emitted. The energy of the

ZN _ f dN: photon “is in the continuum.

(E(N) — E,)T/2h]
(E(N) = Ea)?

sin?
P(T) = (6l Himla)? [ 2 N, (1017)

The integral extends over the states to which the transitions can occur. Since the
integral converges very rapidly, the limits can be extended to +oo. With

the transition probability becomes

AN T [T  sin?z
Pm=mwmmﬁ——/ pauity
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The integral has the value 7, so that the transition probability finally becomes

2T ,dN

(10.18)
The notation (3| Hiyt|) indicates that the transition occurs from states |a) to states
|3). Since Hipg is assumed to be time-independent, the transition probability is
proportional to the time 7. The transition rate is the transition probability per
unit time, and it is
dN

<ﬂ|Hint|Oé>|2E- (10.19)
We have thus derived the golden rule. (Actually Fermi called it the golden rule No.
2.) Tt is extremely useful in all discussions of transition processes and we shall refer

to it frequently. The factor

. 2w
wsa = P(T) = |

dN

I5 =
is called the density-of-states factor; it gives the number of available states per unit
energy, and it will be discussed in Section 10.2.

e In some applications it happens that the matrix element (3| Hint |}, connecting
states of equal energy, vanishes. The approximation that leads to Eq. (10.18) can
then be taken one step further. Fermi called this result the golden rule No. 1, and
it can be stated simply: Replace the matrix element (3|Hint|c) in Eq. (10.19) by

(B|Hint|o) — — Z <ﬂ|HiIz§|n>_<T;!jHint|a>' (10.21)

n

(E) (10.20)

The one-step transition |a) — |3) from the initial to the final state is replaced
by a sum over two-step transitions. These proceed from the initial state |a) to all
accessible intermediate states |n) and from there to the final state |3). o

10.2 Phase Space

In the present section, we shall derive an expression for the density-of-states factor
p(E) = dN/dE. We consider first a one-dimensional problem, where a particle
moves along the x direction with momentum p,. Position and momentum of the
particles are described simultaneously in an x — p, plot (phase space). The repre-
sentation is different in classical and in quantum mechanics. In classical mechanics,
position and momentum can be measured simultaneously to arbitrary accuracy,
and the state of a particle can be represented by a point (Fig. 10.4(a)). Quantum
mechanics, however, limits the description in phase space. The uncertainty relation

AzAp, > h

states that position and momentum cannot be simultaneously measured to unlim-
ited accuracy. The product of uncertainties must be bigger than 7, and a particle
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Figure 10.4: Classical and quantum mechanical one-dimensional phase space. In the classical case,
the state of a particle can be described by a point. In the quantum case, a state must be described
by a cell of volume h = 2mh.

consequently must be represented by a cell rather than a point in phase space. The

shape of the cell depends on the measurements that have been made, but the volume

is always equal to h = 27h. In Fig. 10.4(b), a volume Lp is shown. The maximum

number of cells that can be crammed into this volume is given by the total volume
divided by the cell volume,

Lp

= —. 10.22

27h ( )

N is the number of states in the volume Lp.(!)

The density of states factor p(E) in one dimension is obtained from Eq. (10.22),

with E = p?/2m, as

AN _dNdp L 2m

)= —=92— — -
AE) =75 dp dE 27k p
(10.23)
_i 2_m
T 271h E -

The factor 2 in Eq. (10.23) is introduced because for each energy E there are two
degenerate states of momentum p and —p.

Equation (10.22) can be verified by considering a free wave in a one-dimensional
“box” of length L. The normalized solution for the Schrodinger equation in the
box,

d*>y  2m 1

— Tq _ ikx
q2 + ﬁE?ﬁ =0 is Y =—=e"".
Periodic boundary conditions, ¥ (x) = (x + L), give

$(0) = (L), and k:i%Tn, n=0,1,2,... (10.24)

INote that N is the number of states, not particles. One state can accommodate one fermion
but an arbitrary number of bosons.
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The number of states per unit momentum interval for n > 1 is given by

An —dn ldn L
Ap ~dp  hdk ~ 27R’
in agreement with Eq. (10.22).
Equation (10.22) is valid for a particle with one degree of freedom. For a particle
in three dimensions, the volume of a cell is given by h3 = (27h)3, and the number
of states in a volume [ d®zd®p in the six-dimensional phase space is

1
Ny = @iy /d3xd3p. (10.25)

The subscript 1 indicates that N is the number of states for one particle. If the
particle is confined to a spatial volume V/, integration over d>x gives

v
Ny = d*p. 10.26
' (2rh)? / b ( )
The density-of-states factor, Eq. (10.20), can now be computed easily:
dNy
= — dp dS2, 10.27
=0 T 27rh3dE/ 27rh3dE/p P (10.27)

where df) is the solid-angle element. With E? = (pc)? + (mc?)?, d/dE becomes
4 _Ed
dE ~ pc2dp

and consequently (with (d/dp) [ dp — 1)

V. pE
P1= iy /Q (10.28)

For transitions to all final states, regardless of the direction of the momentum p,
the density-of-states factor for one particle is

VpE

——. 10.2
2m2c2h? (10-29)

p1=

Next we consider the density of states for two particles, 1 and 2. If the total

momentum of the two particles is fixed, the momentum of one determines the

momentum of the other and the extra degrees of freedom are not really there. The

total number of states in momentum space is the same as for one particle, namely

Ny, as in Eq. (10.26). However, the density-of-states factor, ps, is different from
Eq. (10.28) because E is now the total energy of the two particles:

2= 27rh (27h)3 dE / 2775 (27h)3 dE /pl dp d2y, (10.30)



10.3. The Classical Electromagnetic Interaction 289
where
plc pac’
2

The evaluation is easiest in the c.m. where p; + py, =0, or

(E1 + Ez)cz

pt =p3 — pidp1 = padpz, and dE = pidp
E{FEs

The density-of-states factor is then given by

1% FE1FEs d / 9
= — dp1 d©)
P2 2rh)3e (Er + E2)pr dpr prap1 1

or

14 EEaopy /
Q 10.31
2= P (B + B) ) E (10-31)

The extension of Eq. (10.30) to three or more particles is straightforward. Consider
three particles; in their c.m. the momenta are constrained by

P+ P, +p3=0. (10.32)

The momenta of two particles can vary independently, but the third one is deter-
mined. The number of states therefore is

V2
Ny=— [ d d®po, 10.33
3 (27771)6/ pl/ b2 ( )
and the density-of-states factor becomes
V2 od
=———[d d*po. 10.34
5= rhys dE/ pl/ bz (10-34)
For n particles, the generalization of Eq. (10.34) is
yn-t d
w=——-— [ &Pp- [ Ppp_y. 10.35
Pr = onh)3n—1) dE/ b1 / Pn-t (10.35)

We shall encounter an application of Eq. (10.34) in Chapter 11, and we shall discuss
the further evaluation there.

10.3 The Classical Electromagnetic Interaction
The energy (Hamiltonian) of a free nonrelativistic particle with mass m and mo-
mentum py,.. is given by

p}
Hppee = —=¢. 10.36
£ 2m ( )





