Interazioni Elettrodeboli

prof. Francesco Ragusa Università di Milano

Lezione n. 12

15.11.2022

Teoria di Fermi del decadimento β Cinematica; spazio delle fasi Approssimazione non relativistica Generalizzazione della teoria di Fermi

anno accademico 2022-2023

• Studiamo lo spazio delle fasi per il decadimento eta (decadimento a 3 corpi)

$$d\Phi = \frac{d^{3}\mathbf{k}}{\left(2\pi\right)^{3} 2E_{e}} \frac{d^{3}\mathbf{k}'}{\left(2\pi\right)^{3} 2E_{\nu}} \frac{d^{3}\mathbf{p}}{\left(2\pi\right)^{3} 2E_{p}} \left(2\pi\right)^{4} \delta^{4} \left(P - k - k' - p\right)$$

• La presenza della funzione $\delta^3(0-k-k'-p)$ rende banale l'integrazione sul 3-momento del protone (d^3p)

$$d\Phi = \frac{\left(2\pi\right)^4}{\left(2\pi\right)^9} \frac{d^3\mathbf{k}}{2E_e} \frac{d^3\mathbf{k}'}{2E_\nu} \frac{1}{2E_p} \delta\left(m_n - E_e - E_\nu - E_p\right) \quad ; \quad E_p = \sqrt{\left|\mathbf{k} + \mathbf{k}'\right|^2 + m_p^2}$$

- Da ora in poi è sottointeso che p = -(k + k')
- Da questo punto in poi si può sviluppare il calcolo in due modi differenti:
 - Il primo finalizzato allo studio del plot di Dalitz
 - Il secondo finalizzato al calcolo della distribuzione dell'energia dell'elettrone o di correlazioni angolari
- Affrontiamo il primo caso (affronteremo il secondo fra poco)
 - \bullet Sviluppiamo il modulo $|\mathbf{k} + \mathbf{k}'|$ e i differenziali

$$d\Phi = \frac{\left(2\pi\right)^4}{\left(2\pi\right)^9} \frac{\mathbf{k}^2 dk d\Omega_e}{2E_e} \frac{\mathbf{k}'^2 dk' d\Omega_{\nu}}{2E_{\nu}} \frac{1}{2E_p} \delta\left(m_n - E_e - E_{\nu} - \sqrt{\mathbf{k}^2 + \mathbf{k}'^2 + 2kk'\cos\theta_{e\nu} + m_p^2}\right)$$

· Ricordiamo che il decadimento è confinato su un piano

$$d\Phi = \frac{1}{(2\pi)^5} \frac{\mathbf{k}^2 dk d\Omega_e}{2E_e} \frac{\mathbf{k}'^2 dk' d\Omega_{\nu}}{2E_{\nu}} \frac{1}{2E_p} \delta \left(\cdot \right) \qquad \boxed{|\mathbf{k}| \equiv k}$$

• Possiamo scegliere la direzione dell'elettrone come riferimento per gli angoli e integrare su $d\Omega_e \to 4\,\pi$

$$d\Phi = \frac{2}{(2\pi)^4} \frac{\mathbf{k}^2 dk}{2E_e} \frac{\mathbf{k}'^2 dk' d\Omega_{\nu}}{2E_{\nu}} \frac{1}{2E_p} \delta (\cdot)$$

• Inoltre $d\Omega_{
u}$ = $2\pi d \cos\theta_{e
u}$

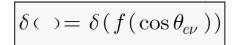
$$d\Phi = \frac{2}{(2\pi)^3} \frac{\mathbf{k}^2 dk}{2E_e} \frac{\mathbf{k}'^2 dk' d\cos\theta_{e\nu}}{2E_{\nu}} \frac{1}{2E_p} \delta (\cdot)$$

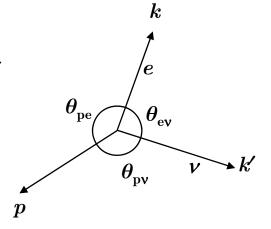
• Infine, dal momento che

$$E^2 = p^2 + m^2 \rightarrow EdE = pdp$$

Otteniamo

$$d\Phi = \frac{2}{(2\pi)^3} \frac{E_e k dE_e}{2E_e} \frac{E_\nu k' dE_\nu d\cos\theta_{e\nu}}{2E_\nu} \frac{1}{2E_p} \delta (\cdot)$$





$$d\Phi = \frac{1}{(2\pi)^3} \frac{1}{4E_p} k dE_e k' dE_{\nu} d\cos\theta_{e\nu} \delta ($$

Scegliamo come variabili le due energie E_e e E_{ν}

- Integriamo sull'angolo $heta_{
 m e
 u}$
 - $\delta(f(x))$ dove $x = \cos\theta_{ev}$

Integriamo sull'angolo
$$\theta_{\rm e\nu}$$
• Dobbiamo tenere conto della funzione
$$\delta(f(x)) \ {\rm dove} \ x = \cos\theta$$

$$f(x) = m_n - E_e - E_\nu - E_p(x)$$

$$f(x) = m_n - E_e - E_\nu - E_p(x)$$
 $E_p(x) = \sqrt{\mathbf{k}^2 + \mathbf{k}'^2 - 2kk'x + m_p^2}$

- Ricordiamo che ${f p}=-({f k}+{f k'})$. La funzione si annulla per $\cos heta_{e
 u}=\cos\overline{ heta}_{e
 u}\equiv x_0$
 - $\overline{ heta}_{e
 u}$ è l'angolo fissato dalla conservazione di energia e quantità di moto
- Ricordando la proprietà della funzione $\delta(x)$

$$\delta(f(x)) = \frac{\delta(x - x_0)}{|f'(x_0)|} \qquad x_0 = \cos \overline{\theta}_{e\nu} \qquad \to \quad E_p = m_n - E_e - E_\nu$$

Otteniamo

$$f'(x) = \frac{-kk'}{\sqrt{k^2 + k'^2 - 2kk'x + m_p^2}}$$
 $f'(x_0) = -\frac{kk'}{E_p}$

ullet Sostituiamo nella formula per $d\,\Phi$ e integriamo sull'angolo

$$d\Phi = \frac{1}{(2\pi)^3} \frac{1}{4E_p} k dE_e k' dE_\nu d\cos\theta_{e\nu} \frac{\delta\left(\cos\overline{\theta}_{e\nu} - \cos\theta_{e\nu}\right)}{\frac{kk'}{E_p}}$$
$$d\Phi = \frac{1}{(2\pi)^3} \frac{1}{4} dE_e dE_\nu$$

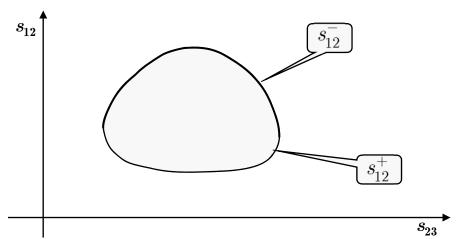
Dalitz Plot

- Il risultato ottenuto è importante per il Dalitz Plot
 - · Ricordiamo le relazioni

$$E_1 = \frac{s + m_1^2 - s_{23}}{2\sqrt{s}}$$

$$E_2 = \frac{s + m_2^2 - s_{31}}{2\sqrt{s}}$$

$$E_3 = \frac{s + m_3^2 - s_{12}}{2\sqrt{s}}$$



- Da esse segue che $dE_1 = -2m_n ds_{23}\,$
- E le relazioni ottenute da sostituzioni cicliche degli indici
- Le relazioni

$$d\Gamma = \frac{1}{2m_A} |\mathfrak{M}|^2 d\Phi_n$$

$$d\Phi = \frac{1}{(2\pi)^3} \frac{1}{4} dE_e dE_\nu$$

- Implicano
 - 1: se l'elemento di matrice $\left|\mathfrak{M}\right|^2$ è costante, lo spazio nel piano E_1-E_2 (o $s_{12}-s_{23}$) è popolato uniformemente
 - 2: deviazioni dall'uniformità danno indicazioni sulla dipendenza di $\left|\mathfrak{M}\right|^2$ dalle variabili $E_1\!-\!E_2$

Esercizi

- In attesa di avere l'elemento di matrice si può impostare il programma per la costruzione di un generatore Montecarlo per il decadimento β :
 - Scrivere un programma per disegnare la regione fisica del decadimento
 - Generare una coppia di numeri casuali $(E_1,\!E_2)$ distribuiti uniformemente nel piano all'interno della regione fisica
 - Utilizzando le formule cinematiche ricavate precedentemente scrivere i tre 4-vettori del protone, del neutrone, del neutrino
 - Le formule precedenti permettono di scrivere i 3 vettori in un piano.
 - Ruotare con un angolo casuale i 3 vettori su questo piano
 - Generare una direzione casuale nello spazio e ruotare i 3 vettori in modo che giacciano sul piano perpendicolare alla direzione generata

Approssimazione non relativistica

· Ricordiamo l'espressione l'ampiezza invariante

$$\mathfrak{M}=-iG\overline{u}_{p_p}\gamma^{\mu}u_{p_n}\ \overline{u}_{p_c}\gamma_{\mu}v_{p_{
u}}$$

- Concentriamoci sulla parte relativa ai nucleoni (corrente adronica)
- Lo spinore del protone è $u_p = \sqrt{E_p + m_p} \left(\frac{\chi^s}{\sigma \cdot \mathbf{p}} \chi^s \right)$
 - · Analogamente per lo spinore del neutrone
- Ricordiamo l'approssimazione non relativistica nella rappresentazione di Dirac
 - $\begin{array}{lll} \bullet \ \, \text{Pertanto} & E_{\mathbf{p}} \approx m_p & \frac{\mathbf{p}}{m_p} \approx 0 & u_p \approx \sqrt{2m_p} \begin{pmatrix} \chi^s \\ 0 \end{pmatrix} \\ \gamma^0 = \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix} & \pmb{\gamma} = \begin{pmatrix} 0 & \pmb{\sigma} \\ -\pmb{\sigma} & 0 \end{pmatrix} & \overline{u}_p = \sqrt{2m_p} \begin{pmatrix} \chi^{\dagger s} & 0 \end{pmatrix} \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix} = \sqrt{2m_p} \begin{pmatrix} \chi^{\dagger s} & 0 \end{pmatrix} \\ \end{array}$
 - Per la componente temporale della corrente adronica otteniamo pertanto ($m_p pprox m_n pprox m_N$)

$$\overline{u}_p \gamma^0 u_n = \sqrt{2m_p} \sqrt{2m_n} \left(\chi^{\dagger r} \quad 0 \right) \begin{pmatrix} \chi^s \\ 0 \end{pmatrix} = 2m_N \chi^{\dagger r} \chi^s = 2m_N \delta_{rs}$$

Approssimazione non relativistica

• Per le componenti spaziali della corrente adronica

$$\overline{u}_{p}\boldsymbol{\gamma}u_{n} = \sqrt{2m_{p}}\sqrt{2m_{n}}\begin{pmatrix}\chi^{\dagger r} & 0\end{pmatrix}\begin{pmatrix}0 & \boldsymbol{\sigma}\\ -\boldsymbol{\sigma} & 0\end{pmatrix}\begin{pmatrix}\chi^{r} \\ 0\end{pmatrix} = \sqrt{2m_{p}}\sqrt{2m_{n}}\begin{pmatrix}\chi^{\dagger r} & 0\end{pmatrix}\begin{pmatrix}0 \\ -\boldsymbol{\sigma}\chi^{r}\end{pmatrix} = 0$$

• Vediamo che per $\mu=1,2,3$ le matrici γ^μ mescolano le componenti "large" e "small" degli spinori e pertanto, nell'approssimazione non relativistica danno contributo nullo

$$\overline{u}_p \gamma^{\mu} u_n \approx \begin{cases} 2m_N \chi^{s\dagger} \chi^r = 2m_N \delta_{rs} & \mu = 0\\ 0 & \mu \neq 0 \end{cases}$$

- Il risultato implica che la interazione di Fermi (vettoriale) non prevede che lo spin del nucleone (o del nucleo) possa cambiare
- Nello studio dei decadimenti β furono presto trovati nuclei che decadevano con variazione dello spin nucleare:
 - · Ad esempio

$$He^{6}(0^{+}) \to Li^{6}(1^{+}) + e^{-} + \overline{\nu}$$

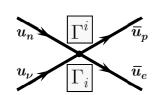
 $B^{12}(1^{+}) \to C^{12}(0^{+}) + e^{-} + \overline{\nu}$

 Divenne pertanto presto chiaro che l'interazione vettoriale doveva essere generalizzata per descrivere anche i decadimenti con variazione dello spin nucleare

- La scelta di interazione fra correnti vettoriali è solo una delle varie possibili
 - La richiesta importante da soddisfare è che l'Hamiltoniana sia uno scalare

$$\mathcal{H}' = G(\overline{\psi}_p \gamma^{\mu} \psi_n)(\overline{\psi}_e \gamma_{\mu} \psi_{\nu}) + h.c.$$

- L'interazione di Fermi è il prodotto scalare di due correnti vettoriali
- Si può generalizzare l'interazione introducendo altre matrici nel vertice di interazione



$$\mathcal{H}' = G \sum_{i=S,V,A,T,P} C_i \left(\overline{\psi}_p \Gamma^i \psi_n \right) \left(\overline{\psi}_e \Gamma_i \psi_
u
ight) + h.c.$$

• Le matrici $\Gamma_{\rm i}$ sono le seguenti combinazioni di matrici γ che hanno ben precise proprietà di trasformazione nelle trasformazioni di Lorentz:

•
$$\Gamma_S = 1$$

•
$$\Gamma_V = \gamma^\mu$$

$$\bullet$$
 Γ_A = $\gamma^5 \gamma^\mu$

$$ullet$$
 $\Gamma_T = \sigma^{\mu
u} = i/2 \, \left[\gamma^\mu, \gamma^
u \right]$

•
$$\Gamma_P = \gamma^5$$

Studieremo in seguito il perché di queste denominazioni

- Verifichiamo che questa generalizzazione permette anche le variazioni dello spin nucleare
- Come nel caso vettoriale utilizziamo la rappresentazione di Dirac

• Ricordiamo anche la matrice
$$\gamma^5$$
 $\gamma^5=i\gamma^0\gamma^1\gamma^2\gamma^3=\begin{pmatrix}0&I\\I&0\end{pmatrix}$

• Interazione scalare $\Gamma_S = I$

$$\Gamma_S = I$$

$$\overline{u}_p \Gamma_S u_n = \overline{u}_p I u_n \approx \sqrt{4m_p m_n} \left(\chi^{\dagger s}, 0 \right) \gamma^0 I \begin{pmatrix} \chi^r \\ 0 \end{pmatrix} = \sqrt{4m_p m_n} \chi^{\dagger s} \chi^r$$

- Gli spinori χ_r e χ_s rappresentano gli stati di spin del nucleone prima e dopo il decadimento
 - Otteniamo pertanto ($m_ppprox m_npprox m_N$)

$$\boxed{\overline{u}_p u_n \, \approx \, 2 m_N \chi^{\dagger \, s} \chi^r \, = \, 2 m_N \delta_{sr}}$$

• Come nel caso vettoriale l'interazione scalare non permette variazioni di spin

Interazione Vettoriale Assiale

$$\Gamma_A = \gamma^5 \gamma^\mu$$

• Scriviamo esplicitamente le 4 matrici Γ_A

$$\gamma^5 \gamma^0 = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix} \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix} = \begin{pmatrix} 0 & -I \\ I & 0 \end{pmatrix}$$

$$\gamma^5 \gamma^i = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix} \begin{pmatrix} 0 & \sigma^i \\ -\sigma^i & 0 \end{pmatrix} = \begin{pmatrix} -\sigma^i & 0 \\ 0 & \sigma^i \end{pmatrix}$$

- Possiamo subito notare che adesso la matrice $\gamma^5\gamma^0$ mescola componenti large e small al contrario delle matrici $\gamma^5\gamma^i$
 - Calcoliamo innanzitutto la componente temporale corrente adronica

$$\begin{split} \overline{u}_p \gamma^5 \gamma^0 u_n &\approx 2 m_N \left(\chi^{\dagger s}, 0 \right) \gamma^0 \gamma^5 \gamma^0 \begin{pmatrix} \chi^r \\ 0 \end{pmatrix} \\ &= 2 m_N \left(\chi^{\dagger s}, 0 \right) \begin{pmatrix} 0 & -I \\ I & 0 \end{pmatrix} \begin{pmatrix} \chi^r \\ 0 \end{pmatrix} = 2 m_N \left(\chi^{\dagger s}, 0 \right) \begin{pmatrix} 0 \\ \chi^r \end{pmatrix} = 0 \end{split}$$

$$\gamma^5 \gamma^0 = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix} \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix} = \begin{pmatrix} 0 & -I \\ I & 0 \end{pmatrix} \qquad \qquad \gamma^5 \gamma^i = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix} \begin{pmatrix} 0 & \sigma^i \\ -\sigma^i & 0 \end{pmatrix} = \begin{pmatrix} -\sigma^i & 0 \\ 0 & \sigma^i \end{pmatrix}$$

Calcoliamo adesso le componenti spaziali della corrente adronica

$$egin{aligned} \overline{u}_p \gamma^5 \gamma^i u_n &pprox 2m_N \left(\chi^{\dagger s}, 0
ight) \gamma^0 \gamma^5 \gamma^i inom{\chi^r}{0} = 2m_N \left(\chi^{\dagger s}, 0
ight) inom{-\sigma^i & 0}{0 & \sigma^i} inom{\chi^r}{0} \end{aligned}$$
 $= 2m_N \left(\chi^{\dagger s}, 0
ight) inom{-\sigma^i \chi^r}{0} = -2m_N \chi^{\dagger s} \sigma^i \chi^r$

In conclusione

$$\overline{u}_p \gamma^5 \gamma^\mu u_n \approx \begin{cases} 0 & \mu = 0 \\ -2m_N \chi^{\dagger s} \sigma^\mu \chi^r & \mu \neq 0 \end{cases}$$

Interazione Assiale

 Vediamo pertanto che l'Interazione Assiale permette transizioni nucleari con variazione dello spin

• Interazione Tensoriale

$$\Gamma_T = \begin{cases} 0 & \mu = \nu \\ i\gamma^\mu \gamma^\nu & \mu \neq \nu \end{cases}$$

• Iniziamo con le 3 matrici σ^{0k} (k=1,3)

$$\sigma^{0k} = i\gamma^0 \gamma^k = i \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix} \begin{pmatrix} 0 & \sigma^i \\ -\sigma^i & 0 \end{pmatrix} = i \begin{pmatrix} 0 & \sigma^k \\ \sigma^k & 0 \end{pmatrix}$$

- Queste matrici mescolano componenti large e small e pertanto $\;\overline{u}_p\sigma^{0k}u_npprox 0$
- Consideriamo adesso le restanti 3 matrici σ^{kl} (k,l=1,3 $k \neq l$)
 - Abbiamo già visto che (con k,l,m ciclici e k,l,m=1,3)

$$\sigma^{k,l} = \Sigma^m \qquad \Sigma^m = egin{pmatrix} \sigma^m & 0 \ 0 & \sigma^m \end{pmatrix}$$

Otteniamo pertanto un risultato analogo a quello dell'interazione assiale

• L'Interazione Tensoriale permette transizioni nucleari con variazione dello spin

• Per finire calcoliamo l'elemento di matrice della corrente adronica per l'Interazione Pseudoscalare

$$\Gamma_P = \gamma^5$$

• Ricordiamo la forma della matrice γ^5 nella rappresentazione di Pauli-Dirac

$$\gamma^5 = i\gamma^0\gamma^1\gamma^2\gamma^3 = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}$$

- ullet La matrice γ^5 chiaramente mescola le componenti large e small
- Pertanto, nell'approssimazione non relativistica

$$\overline{u}_p \gamma^5 u_n \approx 0$$

Interazione Pseudoscalare

• Pertanto l'Interazione Pseudoscalare, nell'approssimazione non relativistica, non può contribuire al decadimento β

• Riassumendo, la parte relativa ai nucleoni dell'elemento di matrice nella approssimazione non relativistica o "statica" si può approssimare così

Accoppiamento	Elemento di Matrice Nucleare		
	Forma covariante	Approssimazione Statica	
S	$\overline{u}_p u_n$	$2m_N \chi^{\dagger s} \chi^r$	
$oldsymbol{V}$	$\overline{u}_p \gamma^\mu u_n$	$2m_N \chi^{\dagger s} \chi^r$	$\mu = 0$
\boldsymbol{A}	$\overline{u}_p \gamma^5 \gamma^k u_n$	$2m_N \chi^{\dagger s} \sigma^k \chi^r$	$k \neq 0$
T	$\overline{u}_p \sigma^{\mu u} u_n$	$2m_N \chi^{\dagger s} \sigma^k \chi^r$	$\mu,\nu \neq 0$ $k \ cyclic$
P	$\overline{u}_p \gamma^5 u_n$	0	

Elemento di matrice nucleare

• La parte relativa al nucleone deve essere generalizzata per tenere conto del fatto che, in generale, il nucleone è in uno stato legato nel nucleo

$$\overline{u}_p \Gamma_X u_n \, o \left\langle X \right
angle \equiv \left\langle N_{Z+1}^A \mid \widehat{O} \widehat{\Gamma}_i \mid N_Z^A \right
angle$$

- Gli stati $\left|N_Z^A\right>$ e $\left|N_{Z+1}^A\right>$ sono rispettivamente le funzioni d'onda iniziale e finale del nucleo
- ullet L'operatore O permette un elemento di matrice non nullo fra nuclei diversi
 - · Distrugge un neutrone nello stato iniziale
 - Crea un protone nello stato finale
- L'operatore Γ è una delle matrici introdotte e determina la variazione di spin
- Gli elementi di matrice nucleare sono di due tipi e vengono indicati

$$\left\langle 1 \right\rangle \equiv \left\langle N_{Z+1}^{A} \mid \widehat{1} \, \widehat{O} \mid N_{Z}^{A} \right\rangle \qquad \left\langle \boldsymbol{\sigma} \right\rangle \equiv \left\langle N_{Z+1}^{A} \mid \widehat{\boldsymbol{\sigma}} \, \widehat{O} \mid N_{Z}^{A} \right\rangle \qquad 3 \begin{cases} \sigma_{x} \\ \sigma_{y} \\ \sigma_{y} \end{cases}$$

- Il calcolo di questa parte dell'elemento di matrice deve tenere conto della struttura nucleare del particolare nucleo in esame
- Non ci occuperemo di questa parte del calcolo

• Dal momento che l'interazione è

$$\mathcal{H}_I' = G \sum_{i=S,V,A,T} C_i \left(\overline{\psi}_p \Gamma^i \psi_n \right) \left(\overline{\psi}_e \Gamma_i \psi_{
u} \right) + h.c.$$

L'ampiezza invariante ha 4 termini

$$\mathfrak{M} \,=\, \mathfrak{M}_{\scriptscriptstyle S} \,+\, \mathfrak{M}_{\scriptscriptstyle V} \,+\, \mathfrak{M}_{\scriptscriptstyle A} \,+\, \mathfrak{M}_{\scriptscriptstyle T}$$

- Ricordando quanto detto per l'elemento di matrice nucleare abbiamo
 - Scalare

$$\mathfrak{M}_{S} = G C_{S} \langle 1 \rangle \overline{u}_{e} (k) v_{\nu} (k')$$

Vettoriale

$$\mathfrak{M}_{V} = GC_{V} \langle 1 \rangle \overline{u}_{e}(k) \gamma^{0} v_{\nu}(k')$$

• Vettoriale Assiale
$$\left| \; \mathfrak{M}_{A} \right. = GC_{A} \left< \sigma_{j} \right> \overline{u}_{e} \left(k \right) \gamma^{5} \gamma^{j} v_{\nu} \left(k' \right)$$

Tensoriale

$$\mathfrak{M}_{T}\,=2GC_{T}\left\langle \sigma_{j}
ight
angle \overline{u}_{e}\left(k
ight)\Sigma^{j}v_{
u}\left(k^{\prime}
ight)$$

Nella somma tensoriale ci sono 6 termini (quindi il fattore 2)

• Riassumendo:

- ullet Gli accoppiamenti di tipo S e V non possono variare lo spin del nucleone
 - ullet Le transizioni con accoppiamenti S e V sono le Transizioni di Fermi
- ullet Gli accoppiamenti di tipo A e T possono variare lo spin del nucleone
 - ullet Le transizioni con accoppiamenti A e T sono le Transizioni di Gamov-Teller
- ullet Gli accoppiamenti di tipo P si annullano nel limite statico

• Regole di selezione:

 $oldsymbol{\cdot}$ Transizioni nucleari con $J_i=J_f=0$ sono dette Transizioni Pure di Fermi

$$O^{14}(0^+) \to N^{14^*}(0^+) + e^+ + \nu$$

- Possono coinvolgere solo le ampiezze $\mathfrak{M}_{_S}$ e $\mathfrak{M}_{_V}$
- Transizioni nucleari con $\Delta J = |J_i J_f| = 1$ sono dette Transizioni Pure di Gamov-Teller

$$B^{12}(1^+) \to C^{12^*}(0^+) + e^- + \overline{\nu}$$

- Possono coinvolgere solo le ampiezze \mathfrak{M}_{A} e \mathfrak{M}_{T}
- Transizioni nucleari con $J_i=J_f$ $J_i\,,\,J_f\!
 eq 0$ sono dette Transizioni Miste

• Possono coinvolgere tutte le ampiezze $\mathfrak{M}_S,\ \mathfrak{M}_V,\ \mathfrak{M}_A$ e \mathfrak{M}_T

La Larghezza di Decadimento

- Per circa 20 anni l'attività sperimentale fu molto intensa per cercare di capire quali dei possibili accoppiamenti fossero effettivamente realizzati in natura
 - L'osservabile sperimentale più semplice è lo spettro di energia dell'elettrone
- La larghezza di decadimento è data da

$$d\Gamma = \frac{1}{2m_n} |\mathfrak{M}|^2 d\Phi$$

L'elemento dello Spazio delle Fasi

$$d\Phi = \frac{d^3k}{(2\pi)^3 2E_k} \frac{d^3k'}{(2\pi)^3 2E_{k'}} \frac{d^3p}{(2\pi)^3 2E_p} (2\pi)^4 \delta^4 (P - k - k' - p)$$

- L'elemento di matrice $\mathfrak M$ possiede degli indici che identificano gli stati di polarizzazione iniziale e finale delle particelle $\to \ \mathfrak M_{s_i,s_1,s_2,s_3}$
 - Sappiamo che se non si osserva lo stato di polarizzazione finale occorre sommare i corrispondenti elementi $\left|\mathfrak{M}\right|^2$ (somma su $s_1,\,s_2,\,s_3$)
 - Se lo stato iniziale non è polarizzato occorre mediare sulle polarizzazioni possibili dello stato iniziale (somma su s_i)
- Se non si osservano effetti polarizzatori si definisce pertanto

$$\overline{|\mathfrak{M}|^2} = \frac{1}{2} \sum_{s_i=1}^2 \sum_{s_1,s_2,s_3=1}^2 \left| \mathfrak{M}_{s_i,s_1,s_2,s_3} \right|^2$$

Termini di Interferenza

• Il modulo quadrato dell'elemento di matrice contiene termini di interferenza

$$\overline{|\mathfrak{M}|^2} = \frac{1}{2} \sum_s \mathfrak{M}_s^* \mathfrak{M}_s = \frac{1}{2} \sum_s \left(\dots + \mathfrak{M}_S^* \mathfrak{M}_A + \dots \right)$$

- ullet L'indice s rappresenta tutti gli indici di spin
- ullet Per brevità si è indicato solo un termine di interferenza (SA) senza indici s
- Dimostriamo che i termini di interferenza SA, ST, VA, VT si annullano
 - Per tutti i termini sopra indicati la parte relativa all'elemento di matrice nucleare contiene termini tipo <1> e < $\sigma>$
 - Pertanto, trascurando constanti non essenziali (il risultato sarà nullo)

$$\langle 1 \rangle^* \langle \sigma^j \rangle = \left(\chi^{\dagger s} \chi^r \right)^* \chi^{\dagger s} \sigma^j \chi^r = \chi^{\dagger r} \chi^s \chi^{\dagger s} \sigma^j \chi^r$$

• Utilizziamo la rappresentazione esplicita per gli spinori di Pauli

$$\chi^1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 $\chi^2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ $\chi^s_k = \delta_{s,k}$

• Inseriamo nell'espressione del termine di interferenza

$$\chi^{\dagger r} \chi^s \chi^{\dagger s} \sigma^j \chi^r = \sum_k \chi_k^{\dagger r} \chi_k^s \sum_{l,m} \chi_l^{\dagger s} \sigma_{l,m}^j \chi_m^r$$

Termini di Interferenza

$$\chi^{\dagger r} \chi^s \chi^{\dagger s} \sigma^j \chi^r = \sum_k \chi_k^{\dagger r} \chi_k^s \sum_{l,m} \chi_l^{\dagger s} \sigma_{l,m}^j \chi_m^r$$

• Sommiamo sugli indici di polarizzazione iniziale e finale

$$\sum_{s,r} \left(\sum_{k} \chi_{k}^{\dagger r} \chi_{k}^{s} \sum_{l,m} \chi_{l}^{\dagger s} \sigma_{l,m}^{j} \chi_{m}^{r} \right) = \sum_{s,r} \left(\sum_{k} \delta_{k,r} \delta_{k,s} \sum_{l,m} \delta_{l,s} \sigma_{l,m}^{j} \delta_{r,m} \right) = \sum_{s,r} \delta_{s,r} \sigma_{s,r}^{j}$$

· Pertanto otteniamo in definitiva

$$\sum_{r,s} \langle 1 \rangle^* \left\langle \sigma^j \right\rangle = \sum_{s,r} \delta_{s,r} \sigma^j_{s,r} = \sum_r \sigma^j_{rr} = Tr \sigma^j = 0$$

- Pertanto i termini di interferenza fra elementi di matrice di Fermi e di Gamov-Teller si annullano se mediati sugli stati di polarizzazione
- Di conseguenza il quadrato (mediato) dell'ampiezza invariante diventa

$$\overline{\left|\mathfrak{M}_{S}+\mathfrak{M}_{V}+\mathfrak{M}_{A}+\mathfrak{M}_{T}\right|^{2}}=\overline{\left|\mathfrak{M}_{S}+\mathfrak{M}_{V}\right|^{2}}+\overline{\left|\mathfrak{M}_{A}+\mathfrak{M}_{T}\right|^{2}}\ \equiv\overline{\left|\mathfrak{M}_{F}\right|^{2}}+\overline{\left|\mathfrak{M}_{GT}\right|^{2}}$$

- Il risultato appena ottenuto permette di semplificare il calcolo
 - Sottolineiamo che succede solo se si media sugli stati di polarizzazione
 - Per questo motivi i calcoli per osservabili che dipendono dalla polarizzazione sono un po' più lunghi

Somme sugli stati di polarizzazione nucleari

- Valutiamo adesso i termini restanti negli elementi di matrice nucleari
 - Consideriamo ad esempio l'elemento di matrice per una transizione di Fermi $\overline{|\mathfrak{M}_F|^2} = \overline{\mathfrak{M}_S^*\mathfrak{M}_S} + \overline{\mathfrak{M}_V^*\mathfrak{M}_V} + 2\operatorname{Re}\overline{\mathfrak{M}_S^*\mathfrak{M}_V}$
 - In tutti e tre i termini compare la somma sulle polarizzazioni di termini

$$\overline{\mathfrak{M}^*\mathfrak{M}} \propto \left(\left. \overline{u}_p \Gamma^a u_n \,
ight)^\dagger \left(\left. \overline{u}_p \Gamma^b u_n \,
ight)
ight.$$

- Abbiamo indicato la matrice genericamente Γ perchè considerazioni identiche valgono per le transizioni di Gamov-Teller
- Utilizziamo sempre l'approssimazione non-relativistica $u_N pprox \sqrt{2m_N} \left[egin{array}{c} \chi^\circ \ 0 \end{array}
 ight]$
 - La parte dell'elemento di matrice dovuta agli spinori degli adroni è

$$\overline{\mathfrak{M}^*\mathfrak{M}} \to 4m_N^2 \sum_{rs} \left(\chi^{\dagger s} \Gamma^a \chi^r \right)^{\dagger} \left(\chi^{\dagger s} \Gamma^b \chi^r \right) = 4m_N^2 \sum_{r,s} \left(\chi^{\dagger r} \Gamma^{a\dagger} \chi^s \right) \left(\chi^{\dagger s} \Gamma^b \chi^r \right)$$

- Con l'approssimazione non relativistica utilizzata vale $\Gamma^\dagger=\Gamma$ e $\chi^\dagger=\chi^T$
- Per finire utilizziamo esplicitamente gli indici matriciali nell'espressione

$$\overline{\mathfrak{M}^*\mathfrak{M}} \propto 4m_N^2 \sum_{r,s} \sum_{jk} \left(\chi_j^r \Gamma_{jk}^a \chi_k^s \right) \sum_{lm} \left(\chi_l^s \Gamma_{lm}^b \chi_m^r \right)$$

• Ancora una volta utilizziamo la forma esplicita per gli spinori $\chi_k^s = \delta_{s,k}$

$$\overline{\mathfrak{M}^*\mathfrak{M}} \propto 4m_N^2 \sum_{r,s} \sum_{jk} ig(\delta_{rj} \Gamma^a_{jk} \delta_{sk} ig) \sum_{lm} ig(\delta_{sl} \Gamma^b_{lm} \delta_{rm} ig) = 4m_N^2 \sum_{r,s} \Gamma^a_{rs} \Gamma^b_{sr} = 4m_N^2 Tr ig[\Gamma^a \Gamma^b ig]$$

Somme sugli stati di polarizzazione nucleari

- Concludiamo il calcolo considerando esplicitamente i due casi
 - Transizioni di Fermi
 - ullet La matrice Γ è semplicemente la matrice I

$$\overline{\mathfrak{M}^*\mathfrak{M}} \propto 4m_N^2 Tr[I] = 8m_N^2$$

- Transizioni di Gamov-Teller
 - Le matrici Γ^a sono le matrici di Pauli

$$\overline{\mathfrak{M}^*\mathfrak{M}} \propto 4m_N^2 Tr \left[\sigma^a \sigma^b \right] = 8m_N^2 \delta_{ab}$$

Il tensore leptonico

- Per la parte leptonica dell'elemento di matrice non si usano approssimazioni
 - Si utilizza la teoria di Dirac
 - Occorre calcolare il modulo quadrato degli elementi di matrice del tipo

$$egin{aligned} \mathfrak{M}_{\mathit{fi}} \, \propto \, \overline{u}_{p_e} \Gamma^a v_{p_
u} \end{aligned} \qquad \Gamma^a \, = \, \widehat{1}, \gamma^\mu, \gamma^5 \gamma^\mu, \sigma^{\mu
u}$$

- Per il calcolo di questi termini si possono utilizzare le tecniche di traccia introdotte precedentemente
 - Abbiamo però una piccola complicazione per la presenza del termine di interferenza

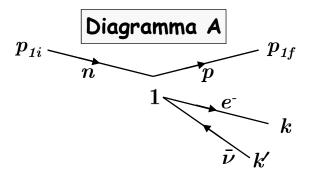
$$\overline{\left|\mathfrak{M}_{F}\right|^{2}} = \overline{\left|\mathfrak{M}_{S}\right|^{2}} + \overline{\left|\mathfrak{M}_{V}\right|^{2}} + 2\operatorname{Re}\overline{\mathfrak{M}_{S}^{*}\mathfrak{M}_{V}}$$

- In realtà gli spinori e la loro posizione sono gli stessi in tutti e 3 i termini
 - In particolare nel termine di interferenza (ad esempio SV)

$$\overline{\mathfrak{M}_{S}}\overline{\mathfrak{M}_{V}} \propto \left(\overline{u}_{p_{e}}\,\widehat{1}v_{p_{\nu}}\,\right)^{\dagger}\left(\overline{u}_{p_{e}}\gamma^{\mu}v_{p_{\nu}}\,\right) = \left(\overline{v}_{p_{\nu}}\,\widehat{1}u_{p_{e}}\,\right)\!\left(\overline{u}_{p_{e}}\gamma^{\mu}v_{p_{\nu}}\,\right)$$

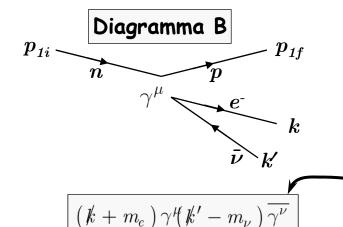
- La struttura è la stessa degli altri termini
- I vertici sono invece mescolati
- Un esempio chiarirà più di ogni altra spiegazione
- Somme sulle polarizzazioni
- Relazioni di completezza

Elementi di matrice



$$(\cancel{k} + m_e)\mathbf{1}(\cancel{k}' - m_{\nu})\mathbf{1}$$

- Per i "quadrati" si introducono nell'ordine:
 - Fermione
 - Vertice
 - · Anti-Fermione
 - Vertice



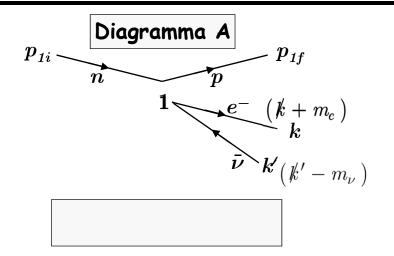
- Per il termine di "interferenza":
 - Fermione (diagramma A)
 - Vertice (diagramma A)
 - Anti-Fermione (diagramma B)
 - Vertice (diagramma B)

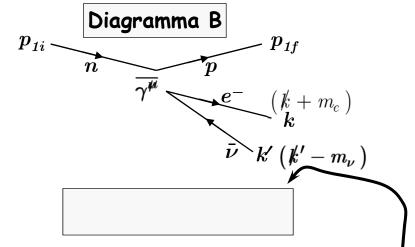
$$\left(\cancel{k}+m_{e}\right)\mathbf{1}\left(\cancel{k}-m_{
u}\right)\ \overline{\gamma^{
u}}$$

N.B.: il secondo vertice introduce l'aggiunto spinoriale della matrice di vertice

$$|\mathfrak{M}_{F}|^{2} = C_{S}^{2} 4 m_{N}^{2} Tr [(\rlap/k + m_{e})(\rlap/k' - m_{\nu})] + C_{V}^{2} 4 m_{N}^{2} Tr [(\rlap/k + m_{e}) \gamma^{0} (\rlap/k' - m_{\nu}) \gamma^{0}] + 2 \operatorname{Re} [C_{S} C_{V} 4 m_{N}^{2} Tr [(\rlap/k + m_{e})(\rlap/k' - m_{\nu}) \gamma^{0}]]$$

Elementi di matrice





- Per i "quadrati" si introducono nell'ordine:
 - Fermione
 - Vertice
 - Anti-Fermione
 - Vertice

- Per il termine di "interferenza":
 - Fermione (diagramma A)
 - Vertice (diagramma A)
 - Anti-Fermione (diagramma B)
 - Vertice (diagramma B)

N.B.: il secondo vertice introduce l'aggiunto spinoriale della matrice di vertice

$$|\overline{\mathfrak{M}_{F}}|^{2} = C_{S}^{2} 4 m_{N}^{2} Tr [(\cancel{k} + m_{e})(\cancel{k}' - m_{\nu})] + C_{V}^{2} 4 m_{N}^{2} Tr [(\cancel{k} + m_{e}) \gamma^{0} (\cancel{k}' - m_{\nu}) \gamma^{0}] + 2 \operatorname{Re} [C_{S} C_{V} 4 m_{N}^{2} Tr [(\cancel{k} + m_{e}) (\cancel{k}' - m_{\nu}) \gamma^{0}]]$$

L'elemento di Matrice

• Riepilogando, l'elemento di matrice risulta

$$\overline{\left|\mathfrak{M}_{S}+\mathfrak{M}_{V}+\mathfrak{M}_{A}+\mathfrak{M}_{T}\right|^{2}} = \overline{\left|\mathfrak{M}_{S}+\mathfrak{M}_{V}\right|^{2}} + \overline{\left|\mathfrak{M}_{A}+\mathfrak{M}_{T}\right|^{2}} = \overline{\left|\mathfrak{M}_{F}\right|^{2}} + \overline{\left|\mathfrak{M}_{GT}\right|^{2}}$$

• Calcoliamo il termine relativo alle transizioni di Fermi $\left|\mathfrak{M}_{F}\right|^{2}$

$$\overline{\left|\overline{\mathfrak{M}_{F}}\right|^{2}} = \overline{\left|\overline{\mathfrak{M}_{S}}\right|^{2}} + \overline{\left|\overline{\mathfrak{M}_{V}}\right|^{2}} + 2\operatorname{Re}\overline{\mathfrak{M}_{S}^{*}\mathfrak{M}_{V}}$$

Abbiamo visto che

$$\mathfrak{M}_{S} = GC_{S}\langle 1 \rangle \overline{u}_{e}(k) v_{\nu}(k')$$
 $\mathfrak{M}_{V} = GC_{V}\langle 1 \rangle \overline{u}_{e}(k) \gamma^{0} v_{\nu}(k')$

- Dove abbiamo anche calcolato $\langle 1 \rangle = 8 m_N^2$
- Assumendo C_S e C_V reali otteniamo

$$|\overline{\mathfrak{M}_{F}}|^{2} = G^{2}C_{S}^{2}4m_{N}^{2}Tr[(\cancel{k} + m_{e})(\cancel{k}' - m_{\nu})] +$$

$$+G^{2}C_{V}^{2}4m_{N}^{2}Tr[(\cancel{k} + m_{e})\gamma^{0}(\cancel{k}' - m_{\nu})\gamma^{0}] +$$

$$+2\operatorname{Re}[G^{2}C_{S}C_{V}4m_{N}^{2}Tr[(\cancel{k} + m_{e})(\cancel{k}' - m_{\nu})\gamma^{0}]]$$

ullet Per il momento non indicheremo più G^2 e lo reintrodurremo alla fine del calcolo

L'elemento di Matrice

$$\overline{|\mathfrak{M}_{F}|^{2}} = C_{S}^{2} 4 m_{N}^{2} Tr [(\cancel{k} + m_{e})(\cancel{k'} - \cancel{\searrow_{\psi}})] + C_{V}^{2} 4 m_{N}^{2} Tr [(\cancel{k} + m_{e}) \gamma^{0} (\cancel{k'} - \cancel{\searrow_{\psi}}) \gamma^{0}] + 2 \operatorname{Re} [C_{S} C_{V} 4 m_{N}^{2} Tr [(\cancel{k} + m_{e}) (\cancel{k'} - \cancel{\searrow_{\psi}}) \gamma^{0}]]$$

- Assumiamo $m_{
 u}=0$

• Sviluppiamo ulteriormente ricordando
$$Tr[\gamma^{\mu_1}\dots\gamma^{\mu_n}]=0$$
 $n\,dispari$

$$\overline{|\mathfrak{M}_{F}|^{2}} = C_{S}^{2} 4 m_{N}^{2} Tr[k k'] + C_{V}^{2} 4 m_{N}^{2} Tr[k \gamma^{0} k' \gamma^{0}] + 2 \operatorname{Re}[C_{S} C_{V} 4 m_{N}^{2} Tr[m_{e} k' \gamma^{0}]]$$

• A questo punto calcoliamo le tracce ricordando le due regole

$$Tr[\,\gamma^\mu\gamma^\nu\,]=4g^{\mu\nu}$$

$$Tr[\,\gamma^\mu\gamma^\nu\gamma^\sigma\gamma^\rho\,] = 4g^{\mu\nu}g^{\sigma\rho}\,-4g^{\mu\sigma}g^{\nu\rho}\,+4g^{\mu\rho}g^{\nu\sigma}$$

• In definitiva

$$\overline{|\mathfrak{M}_F|^2} = C_S^2 4 m_N^2 4 k \cdot k' + C_V^2 4 m_N^2 4 \left(E_e E_\nu - k \cdot k' + E_e E_\nu \right) + 2 \operatorname{Re} \left[C_S C_V 4 m_N^2 4 m_e E_\nu \right]$$

$$\overline{|\mathfrak{M}_{F}|^{2}} = 16m_{N}^{2} \left[C_{S}^{2}k \cdot k' + C_{V}^{2} \left(2E_{e}E_{\nu} - k \cdot k' \right) + 2C_{S}C_{V}m_{e}E_{\nu} \right]$$

L'elemento di Matrice

$$\begin{split} \overline{\left| \mathbf{\mathfrak{M}}_{F} \right|^{2}} &= 16m_{N}^{2} \left[C_{S}^{2}k \cdot k' + C_{V}^{2} \left(2E_{e}E_{\nu} - k \cdot k' \right) + 2C_{S}C_{V}m_{e}E_{\nu} \right] \\ \overline{\left| \mathbf{\mathfrak{M}}_{F} \right|^{2}} &= 16m_{N}^{2} \left[C_{S}^{2} \left(E_{e}E_{\nu} - \mathbf{p}_{e} \cdot \mathbf{p}_{\nu} \right) + C_{V}^{2} \left(2E_{e}E_{\nu} - k \cdot k' \right) + 2C_{S}C_{V}m_{e}E_{\nu} \right] \\ \overline{\left| \mathbf{\mathfrak{M}}_{F} \right|^{2}} &= 16m_{N}^{2} \left[C_{S}^{2} \left(E_{e}E_{\nu} - \mathbf{p}_{e} \cdot \mathbf{p}_{\nu} \right) + C_{V}^{2} \left(2E_{e}E_{\nu} - E_{e}E_{\nu} + \mathbf{p}_{e} \cdot \mathbf{p}_{\nu} \right) + 2C_{S}C_{V}m_{e}E_{\nu} \right] \\ \overline{\left| \mathbf{\mathfrak{M}}_{F} \right|^{2}} &= 16m_{N}^{2} \left[C_{S}^{2} \left(E_{e}E_{\nu} - \mathbf{p}_{e} \cdot \mathbf{p}_{\nu} \right) + C_{V}^{2} \left(E_{e}E_{\nu} + \mathbf{p}_{e} \cdot \mathbf{p}_{\nu} \right) + 2C_{S}C_{V}m_{e}E_{\nu} \right] \\ \overline{\left| \mathbf{\mathfrak{M}}_{F} \right|^{2}} &= 16m_{N}^{2}E_{e}E_{\nu} \left[C_{S}^{2} \left(1 - \frac{\mathbf{p}_{e} \cdot \mathbf{p}_{\nu}}{E_{e}E_{\nu}} \right) + C_{V}^{2} \left(1 + \frac{\mathbf{p}_{e} \cdot \mathbf{p}_{\nu}}{E_{e}E_{\nu}} \right) + 2C_{S}C_{V} \frac{m_{e}E_{\nu}}{E_{e}E_{\nu}} \right] \\ \overline{\left| \mathbf{\mathfrak{M}}_{F} \right|^{2}} &= 16m_{N}^{2}E_{e}E_{\nu} \left[C_{S}^{2} \left(1 - \mathbf{\beta}_{e} \cdot \mathbf{\beta}_{\nu} \right) + C_{V}^{2} \left(1 + \mathbf{\beta}_{e} \cdot \mathbf{\beta}_{\nu} \right) + 2C_{S}C_{V} \frac{m_{e}}{E_{e}} \right] \end{split}$$

ullet Per finire, reintroduciamo la costante G e otteniamo

$$\boxed{\overline{\left| \overline{\mathfrak{M}_{F}} \right|^{2}} = 16m_{N}^{2}E_{e}E_{\nu}G^{2} \left[C_{S}^{2} \left(1 - \boldsymbol{\beta_{e}} \cdot \boldsymbol{\beta_{\nu}} \right) + C_{V}^{2} \left(1 + \boldsymbol{\beta_{e}} \cdot \boldsymbol{\beta_{\nu}} \right) + 2C_{S}C_{V} \frac{m_{e}}{E_{e}} \right]}$$

• Un calcolo analogo per l'elemento di matrice di Gamov-Teller

$$\boxed{|\overline{\mathfrak{M}_{GT}}|^2 = 16m_N^2 E_e E_{\nu} G^2 \left[3C_A^2 \left(1 - \frac{1}{3} \mathbf{\beta_e} \cdot \mathbf{\beta_{\nu}} \right) + 12C_T^2 \left(1 + \frac{1}{3} \mathbf{\beta_e} \cdot \mathbf{\beta_{\nu}} \right) - 12C_A C_T \frac{m_e}{E_e} \right]}$$

• L'elemento di matrice che abbiamo trovato dipende, oltre che dalle energie, anche dall'angolo fra il neutrino e l'elettrone

$$\boxed{\overline{\left| \overline{\mathfrak{M}_{F}} \right|^{2}} = 16m_{N}^{2}E_{e}E_{\nu}G^{2} \left[C_{S}^{2} \left(1 - \boldsymbol{\beta_{e}} \cdot \boldsymbol{\beta_{\nu}} \right) + C_{V}^{2} \left(1 + \boldsymbol{\beta_{e}} \cdot \boldsymbol{\beta_{\nu}} \right) + 2C_{S}C_{V} \frac{m_{e}}{E_{e}} \right]}$$

- È pertanto necessario sviluppare lo spazio delle fasi senza integrare sugli angoli
- Riprendiamo pertanto il calcolo a partire dall'integrazione del momento del protone in poi (vedi diapositiva 304)

$$d\Phi = \frac{(2\pi)^4}{(2\pi)^9} \frac{\mathbf{k}^2 dk d\Omega_e}{2E_e} \frac{\mathbf{k}'^2 dk' d\Omega_{\nu}}{2E_{\nu}} \frac{1}{2E_p} \delta\left(m_n - E_e - E_{\nu} - \sqrt{\mathbf{k}^2 + \mathbf{k}'^2 + 2kk'\cos\theta_{e\nu} + m_p^2}\right)$$

• Adesso vogliamo integrare sull'energia del neutrino e poniamo $x=E_{
u}=|{f k}'|$

$$f(x)=m_n-E_e-x-\sqrt{\mathbf{k}^2+x^2+2kx\cos heta_{e
u}+m_p^2}$$
 = E_p $pprox m_p$

• Trascurando l'energia cinetica del protone —

$$f(x) \approx m_n - m_p - E_e - x = x_0 - x$$
 $x_0 \approx m_n - m_p - E_e$ $\left| f'(x_0) \right| = 1$
$$\delta(f(x)) = \delta(x_0 - x)$$

• Con questa approssimazione abbiamo (ricordiamo $|{f k}'|=E_{
u}$ e $p_e\equiv |{f k}|$)

$$d\Phi = \frac{(2\pi)^4}{(2\pi)^9} \frac{p_e^2 dp_e d\Omega_e}{2E_e} \frac{E_\nu^2 dE_\nu d\Omega_\nu}{2E_\nu} \frac{1}{2E_p} \delta(E_\nu - \bar{E}_\nu) \qquad \bar{E}_\nu = m_n - m_p - E_e$$

$$m_n - m_p = \Delta m$$

ullet Possiamo a questo punto integrare su $E_
u$

$$d\Phi = rac{1}{\left(2\pi
ight)^5} rac{p_e^2 dp_e d\Omega_{
m e}}{8E_e E_p} ar{E}_
u d\Omega_
u$$

• Inoltre utilizziamo la consueta relazione

$$p_e^2 = E_e^2 - m_e^2 \rightarrow p_e dp_e = E_e dE_e$$

• Ancora una volta trascuriamo l'energia cinetica del protone $E_ppprox m_p\!\!pprox m_N$

$$d\Phi = \frac{1}{(2\pi)^5} \frac{E_{\nu} p_e}{8m_N} dE_e d\Omega_e d\Omega_{\nu}$$

- Per semplicità abbiamo sostituito $\,\overline{\!E}_{\!\nu}\,=E_{\!\nu}\,=m_{\!n}\,-m_{\!p}\,-E_{\!e}$
- A questo punto abbiamo tutti gli ingredienti per il calcolo della larghezza di decadimento

La larghezza di decadimento

• In definitiva abbiamo per la larghezza delle transizioni di Fermi

$$d\Gamma_F = \frac{1}{2m_n} \overline{\left| \mathcal{M}_F \right|^2} d\Phi$$

$$d\Gamma_F = \frac{1}{2m_N} 16m_N^2 E_e E_\nu G^2 \left[C_S^2 \left(1 - \mathbf{\beta_e} \cdot \mathbf{\beta_\nu} \right) + C_V^2 \left(1 + \mathbf{\beta_e} \cdot \mathbf{\beta_\nu} \right) + 2C_S C_V \frac{m_e}{E_e} \right] \frac{1}{(2\pi)^5} \frac{E_\nu p_e}{8m_N} dE_e d\Omega_e d\Omega_\nu$$

$$d\Gamma_F = G^2 \frac{\left(C_S^2 + C_V^2\right)}{(2\pi)^5} p_e E_e E_\nu^2 \left[1 + a_F \boldsymbol{\beta_e} \cdot \boldsymbol{\beta_\nu} + \kappa_F \frac{m_e}{E_e}\right] dE_e d\Omega_e d\Omega_\nu$$

• Dove
$$E_{
u}=\Delta m-E_e$$
 $a_F=rac{C_V^2-C_S^2}{C_S^2+C_V^2}$ $\kappa_F=rac{2C_SC_V}{C_S^2+C_V^2}$

• Analogamente per la larghezza delle transizioni Gamov-Teller

$$d\Gamma_{GT} = G^2 \frac{3(C_A^2 + C_T^2)}{(2\pi)^5} p_e E_e E_\nu^2 \left[1 + a_{GT} \boldsymbol{\beta}_e \cdot \boldsymbol{\beta}_\nu - \kappa_{GT} \frac{m_e}{E_e} \right] dE_e d\Omega_e d\Omega_\nu$$

Dove

$$a_{GT} = -\frac{1}{3} \frac{C_A^2 - 4C_T^2}{C_A^2 + 4C_T^2} \qquad \kappa_{GT} = 4 \frac{2C_A C_T}{C_A^2 + C_T^2}$$