Interazioni Elettrodeboli

prof. Francesco Ragusa Università di Milano

Lezione n. 2

3.10.2022

Equazione di Dirac 1 Soluzioni di onde piane Invarianza relativistica

anno accademico 2022-2023

Equazione di Dirac

- La prima difficoltà dell'equazione di Klein-Gordon è stata l'apparizione di una densità di probabilità negativa
 - Dovuta alla presenza della derivata seconda rispetto al tempo
- Dirac affrontò il problema in modo diretto richiedendo
 - 1. Un'equazione di primo grado rispetto al tempo
 - 2. Anche di primo grado rispetto alle coordinate spaziali per avere covarianza relativistica
 - 3. Che comunque riproducesse la corretta relazione $E^2={
 m p}^2+m^2$
 - Equivalente a richiedere che la funzione d'onda ψ sia anche soluzione dell'equazione di Klein-Gordon
 - 4. Inoltre l'equazione deve essere invariante per trasformazioni di Lorentz
- Con queste premesse Dirac ipotizzò che la forma dell'equazione potesse essere

$$i\frac{\partial}{\partial t}\psi = \left[-i\left(\alpha_1\frac{\partial}{\partial x_1} + \alpha_2\frac{\partial}{\partial x_2} + \alpha_3\frac{\partial}{\partial x_3}\right) + \beta m\right]\psi$$

$$i\frac{\partial}{\partial t}\psi = \left[-i\sum_{k}\alpha_{k}\frac{\partial}{\partial x_{k}} + \beta m\right]\psi$$

Equazione di Dirac

• Identifichiamo l'Hamiltoniana dell'equazione di Dirac

$$i\frac{\partial}{\partial t}\psi = \left[-i\sum_{k}\alpha_{k}\frac{\partial}{\partial x_{k}} + \beta m\right]\psi \qquad H = -i\sum_{k}\alpha_{k}\frac{\partial}{\partial x_{k}} + \beta m \qquad H = -i\boldsymbol{\alpha}\cdot\boldsymbol{\nabla} + \beta m$$

$$i\frac{\partial}{\partial t}\psi = H\psi$$

• Per completezza, scriviamo anche l'equazione di Dirac in forma estesa quando \hbar e c sono diversi da 1

$$i\hbar \frac{\partial}{\partial t}\psi = \left[-i\hbar c \sum_{k} \alpha_{k} \frac{\partial}{\partial x_{k}} + \beta m c^{2}\right]\psi$$

- ullet Per determinare la natura delle grandezze lpha e eta richiediamo il punto 3
 - ullet 3. La funzione d'onda ψ deve soddisfare anche l'equazione di Klein-Gordon
- Applichiamo $i\partial/\partial t$ all'equazione di Dirac

$$i\frac{\partial}{\partial t}i\frac{\partial}{\partial t}\psi = i\frac{\partial}{\partial t}H\psi \qquad -\frac{\partial^2}{\partial t^2}\psi = Hi\frac{\partial}{\partial t}\psi \qquad -\frac{\partial^2}{\partial t^2}\psi = HH\psi$$

Equazione di Dirac

• Introducendo la forma esplicita dell'Hamiltoniana

$$-\frac{\partial^2}{\partial t^2}\psi = \left[-i\sum_k \alpha_k \frac{\partial}{\partial x_k} + \beta m\right] \left[-i\sum_l \alpha_l \frac{\partial}{\partial x_l} + \beta m\right]\psi$$

• Sviluppiamo il prodotto (facendo attenzione all'ordine nei prodotti)

$$-\frac{\partial^2}{\partial t^2}\psi = \left(-\sum_k \alpha_k \frac{\partial}{\partial x_k} \sum_l \alpha_l \frac{\partial}{\partial x_l} - im \sum_k \alpha_k \beta \frac{\partial}{\partial x_k} - im \sum_l \beta \alpha_l \frac{\partial}{\partial x_l} + \beta^2 m^2\right)\psi$$

• Raccogliamo i termini "diagonali" e i termini "incrociati" separatamente

$$-\frac{\partial^2}{\partial t^2}\psi = \left(-\sum_k \alpha_k^2 \frac{\partial^2}{\partial x_k^2} - \sum_{\substack{k,l=1\\k>l}}^3 (\alpha_k \alpha_l + \alpha_l \alpha_k) \frac{\partial}{\partial x_k} \frac{\partial}{\partial x_l} - im \sum_k (\alpha_k \beta + \beta \alpha_k) \frac{\partial}{\partial x_k} + \beta^2 m^2\right)\psi$$

ullet Per ritrovare l'equazione di Klein-Gordon fissiamo condizioni su $lpha_k$ e eta

$$\alpha_k^2 = 1$$
 $\alpha_k \alpha_l + \alpha_l \alpha_k = 0$ $k \neq l$ $\alpha_k \beta + \beta \alpha_k = 0$ $\beta^2 = 1$

- Osserviamo che le quantità $lpha_k$ e eta non commutano
 - Pertanto esse devono essere matrici

Proprietà delle matrici α e β

• Le relazioni appena trovate sono espresse più convenientemente introducendo l'anticommutatore di due matrici A e B: $\{A,B\} = AB + BA$

$$\left\{\alpha_{j},\alpha_{k}\right\}=2\delta_{jk}\widehat{1}\qquad \left\{\alpha_{j},\beta\right\}=\widehat{0}\qquad \beta^{2}=\widehat{1}$$

- Determiniamo alcune proprietà delle matrici α e β
 - Devono essere hermitiane (l'Hamiltoniana H deve essere hermitiana e $i \nabla$ è un operatore hermitiano) $H = -i \alpha \cdot \nabla + \beta m$
 - Dal momento che $\alpha^2 = \beta^2 = 1$ gli autovalori (reali) devono essere $\lambda = \pm 1$ $\beta u = \lambda u$ $\beta^2 u = \lambda \beta u = \lambda^2 u$ $u = \lambda^2 u$ $\lambda^2 = 1$ $\lambda = \pm 1$
 - Sono matrici con traccia nulla
 - Sfruttiamo la proprietà ciclica della traccia $\mathit{Tr}[ABC] = \mathit{Tr}[\mathit{CAB}]$

• Abbiamo
$$\beta^2 = \widehat{1}$$

$$\beta\alpha_k = -\alpha_k\beta$$

$$Tr[ABC] = Tr[CAB]$$

$$Tr[\alpha_k] = Tr[\beta^2\alpha_k] = -Tr[\beta\alpha_k\beta] = -Tr[\beta^2\alpha_k]$$

Concludiamo

$$Tr[\alpha_k] = 0$$

• E analogamente per β

$$Tr[\beta] = 0$$

Proprietà delle matrici α e β

- Le matrici hanno un rango pari
 - Traccia nulla e autovalori ±1 implicano che il rango deve essere pari
- Abbiamo 4 matrici pertanto il valore minimo del rango è 4
 - Infatti le matrici di Pauli (2×2) hanno le proprietà richieste ma sono solo 3

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

non è un 4-vettore di Lorentz

- Pertanto le matrici α e β hanno dimensione 4×4
 - Pertanto le matrici α e β hanno dimensione 4×4 Quindi anche la funzione d'onda ψ ha 4 componenti $\psi=\begin{bmatrix} \tau_1 \\ \psi_2 \\ \psi_3 \end{bmatrix}$ spinore
- Ci sono infinite possibilità per le matrici α e β
 - ullet Legate fra di loro da trasformazioni unitarie $lpha' = Ulpha\,U^{\!-\!1}$
 - Ne considereremo 2
 - La rappresentazione di Pauli-Dirac
 - Utile per studiare l'approssimazione non relativistica
 - La rappresentazione di Weyl o rappresentazione Chirale
 - Utile nel limite di alta energia o massa della particella nulla
- In moltissimi casi comunque non è necessario scrivere esplicitamente le matrici

Rappresentazione di Pauli-Dirac

Nella Rappresentazione di Pauli-Dirac le matrici sono

$$\alpha_k = \begin{pmatrix} \widehat{0} & \sigma_k \\ \sigma_k & \widehat{0} \end{pmatrix} \qquad \beta = \begin{pmatrix} \widehat{1} & \widehat{0} \\ \widehat{0} & -\widehat{1} \end{pmatrix} \qquad \qquad \widehat{1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

- In questa forma (a blocchi) le quantità $\widehat{1}$ e $\widehat{0}$ sono matrici di dimensione 2×2
- ullet Ricordiamo alcune proprietà delle matrici di Pauli σ

$$\{\sigma_k,\sigma_l\}=2I\delta_{kl}$$

$$[\sigma_k, \sigma_l] = 2i\varepsilon_{klm}\sigma_m$$

 $[\sigma_k,\sigma_l]=2iarepsilon_{klm}\sigma_m$ sottointesa la somma su m

• Il tensore totalmente antisimmetrico ε_{klm} è così definito

•
$$\varepsilon_{123} = +1$$

•
$$arepsilon_{klm}=\ +1$$
 klm permutazione pari di 123

•
$$\varepsilon_{klm} = -1$$
 klm permutazione dispari di 123

•
$$arepsilon_{klm}=0$$
 due o più indici uguali

$$\sigma_k \sigma_l = -\sigma_l \sigma_k = i\sigma_m$$

$$\sigma_k \sigma_l = i \sum_m \varepsilon_{klm} \sigma_m$$

- La proprietà del commutatore si può anche scrivere (k,l,m) ciclici)
- Dimostrare che

$$(\boldsymbol{\sigma} \cdot \mathbf{a})(\boldsymbol{\sigma} \cdot \mathbf{b}) = \mathbf{a} \cdot \mathbf{b}\hat{1} + i\boldsymbol{\sigma} \cdot (\mathbf{a} \times \mathbf{b})$$

$$\exp[i\alpha \hat{\mathbf{n}} \cdot \boldsymbol{\sigma}] = \hat{1}\cos\alpha + \hat{\mathbf{n}} \cdot \boldsymbol{\sigma}\sin\alpha \qquad |\hat{\mathbf{n}}| = 1$$

Soluzioni dell'equazione di Dirac: onde piane

Cerchiamo una soluzione del tipo (onda piana)

$$\psi(x) = we^{-ip \cdot x}$$

- Nella soluzione x e p sono 4-vettori e w è uno spinore
 - ullet Inoltre abbiamo costruito l'equazione di Dirac in modo che ψ soddisfi anche l'equazione di Klein-Gordon e pertanto deve essere $p^2=p_0^2-{f p}^2=m^2$
 - Sostituendo nell'equazione di Dirac

$$i\frac{\partial}{\partial t}\psi = \left[-i\sum_{k}\alpha_{k}\frac{\partial}{\partial x_{k}} + \beta m\right]\psi$$

Otteniamo l'equazione matriciale

$$p_o w = (\boldsymbol{\alpha} \cdot \mathbf{p} + \beta m) w = H w$$

$$H = \boldsymbol{\alpha} \cdot \mathbf{p} + \beta m$$

$$H = \boldsymbol{\alpha} \cdot \mathbf{p} + \beta m$$

Dove ricordiamo che

$$p_o = \pm \sqrt{\mathbf{p}^2 + m^2} = \pm E_{\mathbf{p}}$$
 $E_{\mathbf{p}} = \sqrt{\mathbf{p}^2 + m^2} > 0$

- Gli spinori w sono gli autovettori dell'equazione agli autovalori $Hw = p_0 w$
 - L'Hamiltoniana H è hermitiana
 - ullet Gli autovalori $\pm p_o$ sono 4 e sono reali
 - ullet Gli autovettori w sono ortogonali

Soluzioni dell'equazione di Dirac: onde piane

- Utilizziamo la rappresentazione di Pauli-Dirac per le matrici α
 - Introduciamo la rappresentazione a blocchi anche per lo spinore w $w = \begin{pmatrix} \phi \\ \chi \end{pmatrix}$

- Le quantità ϕ e χ sono spinori di Pauli (dimensione 2)
- Introducendo nell'equazione

$$p_o w = (\boldsymbol{\alpha} \cdot \mathbf{p} + \beta m) w$$

• Si ottiene l'equazione

$$p_0 \begin{pmatrix} \phi \\ \chi \end{pmatrix} = \begin{pmatrix} 0 & \boldsymbol{\sigma} \cdot \mathbf{p} \\ \boldsymbol{\sigma} \cdot \mathbf{p} & 0 \end{pmatrix} \begin{pmatrix} \phi \\ \chi \end{pmatrix} + m \begin{pmatrix} \widehat{1} & 0 \\ 0 & -\widehat{1} \end{pmatrix} \begin{pmatrix} \phi \\ \chi \end{pmatrix}$$

• Dalla quale si ottengono le equazioni accoppiate per ϕ é χ

$$(p_0 - m)\phi = \boldsymbol{\sigma} \cdot \mathbf{p}\chi$$
 $\phi = \frac{\boldsymbol{\sigma} \cdot \mathbf{p}}{p_0 - m}\chi$

$$(p_0 + m)\chi = \boldsymbol{\sigma} \cdot \mathbf{p}\phi$$
 $\chi = -\frac{1}{2}$

- $(p_0+m)\chi=\sigma\cdot\mathbf{p}\phi\qquad \qquad \chi=\frac{\sigma\cdot\mathbf{p}}{p_0+m}\phi$ Bisogna notare che le due equazioni non sono indipendenti Applicando l'operatore $\sigma\cdot\mathbf{p}/(p_o+m)$ alla prima equazione ($\phi=\sigma\cdot\mathbf{p}/(p_o-m)\chi$)

$$\frac{\boldsymbol{\sigma} \cdot \mathbf{p}}{p_0 + m} \phi = \frac{\boldsymbol{\sigma} \cdot \mathbf{p}}{p_0 + m} \frac{\boldsymbol{\sigma} \cdot \mathbf{p}}{p_0 - m} \chi \qquad (\boldsymbol{\sigma} \cdot \mathbf{p})^2 = \mathbf{p}^2$$
• Ritroviamo la seconda equazione
$$\frac{\boldsymbol{\sigma} \cdot \mathbf{p}}{p_0 + m} \phi = \frac{\mathbf{p}^2}{p_0^2 - m^2} \chi \qquad \frac{\boldsymbol{\sigma} \cdot \mathbf{p}}{p_0 + m} \phi = \frac{\mathbf{p}^2}{\mathbf{p}^2} \chi = \chi$$

$$\frac{\boldsymbol{\sigma} \cdot \mathbf{p}}{p_0 + m} \phi = \frac{\mathbf{p}^2}{\mathbf{p}^2} \chi = \chi$$

Soluz. dell'equazione di Dirac: Energia positiva

- Il primo gruppo di soluzioni si trova dalla seconda equazione ($p_0 + m$) $\chi = {m \sigma} \cdot {f p} \phi$
 - In questo caso usiamo l'autovalore positivo: $p_o = + E_{
 m p}$

 - Ricaviamo χ in funzione di ϕ $\chi=\frac{{m \sigma}\cdot{\bf p}}{E_{\bf p}+m}\phi$ Sostituiamo in ${\pmb w}.$ La soluzione è pertanto $w({\bf p})=\begin{pmatrix}\phi\\ {m \sigma}\cdot{\bf p}\\ \overline{E_{\bf p}+m}\phi\end{pmatrix}$
 - Lo spinore (bidimensionale) ϕ è arbitrario
 - ullet Ci sono due possibili spinori indipendenti $\phi_r,\ r=1,\!2$ quindi due possibili stati

- Se la particella ha una massa diversa da zero si può considerare il suo sistema di riposo (${\bf p}={\bf 0}$) nel quale si ha
 - Nel sistema di riposo i due spinori sono

$$w\left(\mathbf{0},1\right) = \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix} \qquad w\left(\mathbf{0},2\right) = \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix} \qquad \text{E infine} \quad \psi_{1}\left(x\right) = \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix} e^{-imt} \qquad \psi_{2}\left(x\right) = \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix} e^{-imt}$$

Soluz. dell'equazione di Dirac: Energia negativa

- Il secondo gruppo di soluzioni si trova dalla prima equazione $(p_0-m)\phi=oldsymbol{\sigma}\cdot\mathbf{p}\chi$
 - In questo caso usiamo l'autovalore negativo: $p_o = -E_{
 m p}$
 - Ricaviamo ϕ in funzione di χ $\phi = \frac{{m \sigma} \cdot {f p}}{p_o m} \chi$ $\phi = \frac{{m \sigma} \cdot {f p}}{-E_{f p} m} \chi$ $\phi = \frac{{m \sigma} \cdot {f p}}{E_{f p} + m} \chi$
 - Sostituiamo in \pmb{w} . La soluzione è pertanto $w(\mathbf{p}) = \begin{pmatrix} \frac{-\pmb{\sigma}\cdot\mathbf{p}}{E_\mathbf{p}+m}\chi\\ \chi \end{pmatrix}$ Lo spinore χ è arbitrario
 - ullet Ci sono due possibili spinori indipendenti $\chi_r,\ r=1,\!2$ quindi due possibili stati

- Se la particella ha una massa diversa da zero si può considerare il suo sistema di riposo (${\bf p}={\bf 0}$) nel quale si ha
 - Nel sistema di riposo i due spinori sono

$$w(\mathbf{0},3) = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \qquad w(\mathbf{0},4) = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \qquad \text{E infine} \quad \psi_3\left(x\right) = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} e^{+imt} \qquad \psi_4\left(x\right) = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} e^{+imt}$$

Soluzioni dell'equazione di Dirac: onde piane

- Abbiamo pertanto trovato 4 soluzioni
 - Due soluzioni (r=1,2) con energia positiva $\psi_r \cdot (x) = w(\mathbf{p},r) \exp\left[-iE_\mathbf{p} + i\mathbf{p} \cdot \mathbf{x}\right] = w(\mathbf{p},r) \exp\left[-ip \cdot x\right]$
 - Due soluzioni (r=3,4) con energia negativa $\psi_r(x) = w(\mathbf{p},r) \exp \left[+i E_{\mathbf{p}} + i \mathbf{p} \cdot \mathbf{x} \right] = \dots$
- l'esponenziale con energia negativa non è in forma covariante
 - Per le soluzioni con energia negativa si sostituisce p o -p
 - Si utilizzano pertanto gli spinori w(-p, r) (attenzione all'ortogonalità)

$$\psi_r(x) = w(-\mathbf{p}, r) \exp[+iE_{\mathbf{p}} - i\mathbf{p} \cdot \mathbf{x}] = w(-\mathbf{p}, r) \exp[+ip \cdot x]$$

• Per evitare di scrivere gli spinori con argomento negativo si definiscono due spinori per l'energia positiva $u(\mathbf{p},r)$ e due spinori per l'energia negativa $v(\mathbf{p},r)$

$$u(\mathbf{p},r) = w(\mathbf{p},r) \qquad r = 1,2$$
$$v(\mathbf{p},r) = w(-\mathbf{p},r+2) \quad r = 1,2$$

• Scrivendo $v(\mathbf{p},r)$ esplicitamente (r=1,2)

$$w(\mathbf{p}, r+2) = \begin{pmatrix} \frac{-\boldsymbol{\sigma} \cdot \mathbf{p}}{E_{\mathbf{p}} + m} \chi_r \\ \chi_r \end{pmatrix} \qquad v(\mathbf{p}, r) = \begin{pmatrix} \frac{\boldsymbol{\sigma} \cdot \mathbf{p}}{E_{\mathbf{p}} + m} \chi_r \\ \chi_r \end{pmatrix}$$

Forma covariante dell'Equazione di Dirac

 Dimostreremo che l'equazione di Dirac ha la stessa forma in tutti i sistemi inerziali

$$i\frac{\partial}{\partial t}\psi = \left[-i\sum_{k}\alpha_{k}\frac{\partial}{\partial x_{k}} + \beta m\right]\psi$$

- Tuttavia la forma fin qui utilizzata non è manifestamente covariante
 - ullet In particolare la coordinata t appare in modo diverso dalle x_k
- Moltiplichiamo l'equazione da sinistra per $oldsymbol{eta}$ $i\frac{\partial}{\partial t}\psi = \left| -i\sum_{k} \beta \alpha_{k} \frac{\partial}{\partial x_{k}} + \beta \beta m \right| \psi$ • Utilizziamo $\beta^2=1$
 - Definiamo $\gamma^0=\beta$ e $\gamma^k=\beta\alpha_k$
 - Introduciamo † $\partial^\mu=(\partial/\partial t$, $-\partial/\partial x^k)$ $\partial_\mu=g_{\mu\nu}\partial^\nu=(\partial/\partial t$, $\partial/\partial x^k)$
- Riordinando i termini otteniamo

$$i \gamma^{\mu} \partial_{\mu} \psi = m \psi$$

$$i \partial \!\!\!/ \psi = m \psi$$

$$i\partial \!\!\!/ \psi = m\psi$$

- È molto usata la notazione di Feynman (a_{μ} è un 4-vettore) $ot\!\!/ = \gamma^{\mu}a_{\mu}$
- ullet Le matrici γ soddisfano le seguenti regole di commutazione

$$\{\gamma^{\mu},\gamma^{\nu}\}=2Ig^{\mu\nu}$$
 Attenzione: verificheremo che non sono (tutte) hermitiane

• †Vedi Aitchison, Hey - Gauge Theories in Particle Physics vol I - problema 3.1

Forma covariante dell'Equazione di Dirac

• Nella rappresentazione di Pauli-Dirac la forma delle matrici è

$$\gamma^0 = \begin{pmatrix} \widehat{1} & \widehat{0} \\ \widehat{0} & -\widehat{1} \end{pmatrix} \quad \gamma^k = \begin{pmatrix} \widehat{0} & \sigma_k \\ -\sigma_k & \widehat{0} \end{pmatrix}$$

In forma esplicita

$$\gamma^0 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \quad \gamma^1 = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix} \quad \gamma^2 = \begin{pmatrix} 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \\ 0 & i & 0 & 0 \\ -i & 0 & 0 & 0 \end{pmatrix} \quad \gamma^3 = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

 Vale la pena rendersi conto di quello che la forma compatta dell'equazione di Dirac significa effettivamente

$$i \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} \partial_0 \psi_1 \\ \partial_0 \psi_2 \\ \partial_0 \psi_3 \\ \partial_0 \psi_4 \end{pmatrix} + i \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \partial_1 \psi_1 \\ \partial_1 \psi_2 \\ \partial_1 \psi_3 \\ \partial_1 \psi_4 \end{pmatrix} + i \begin{pmatrix} 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \\ 0 & i & 0 & 0 \\ -i & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \partial_2 \psi_1 \\ \partial_2 \psi_2 \\ \partial_2 \psi_3 \\ \partial_2 \psi_4 \end{pmatrix} + i \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} \partial_3 \psi_1 \\ \partial_3 \psi_2 \\ \partial_3 \psi_3 \\ \partial_3 \psi_4 \end{pmatrix} = m \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \\ \psi_4 \end{pmatrix}$$

• Si tratta di un sistema di equazioni differenziali alle derivate parziali

$$i[\partial_{0}\psi_{1} + (\partial_{1} - i\partial_{2})\psi_{4} + \partial_{3}\psi_{3}] = m\psi_{1}$$

$$i[\partial_{0}\psi_{2} + (\partial_{1} + i\partial_{2})\psi_{3} - \partial_{3}\psi_{4}] = m\psi_{2}$$

$$i[-\partial_{0}\psi_{3} - (\partial_{1} - i\partial_{2})\psi_{2} - \partial_{3}\psi_{1}] = m\psi_{3}$$

$$i[-\partial_{0}\psi_{4} - (\partial_{1} + i\partial_{2})\psi_{1} + \partial_{3}\psi_{2}] = m\psi_{4}$$

Forma covariante dell'Equazione di Dirac

- Abbiamo visto le soluzioni (onde piane) dell'equazione di Dirac
 - Due funzioni con energia positiva $u(\mathbf{p},r)e^{-i\mathbf{p}\cdot x}$
 - Due funzioni con energia negativa $v(\mathbf{p},\mathbf{r})\,e^{+ip\cdot x}$
- Applicando l'equazione di Dirac in forma covariante a queste soluzioni otteniamo due equazioni per gli spinori u e v

$$i\gamma^{\mu}\partial_{\mu}\psi = m\psi$$

$$\gamma^{\mu}p_{\mu}u = mu \quad (\not p - m)u = 0$$

$$\gamma^{\mu} p_{\mu} u = m u \quad \left(\cancel{p} - m \right) u = 0 \quad -\gamma^{\mu} p_{\mu} v = m v \quad \left(\cancel{p} + m \right) v = 0$$

- Ricordarsi che si tratta di due equazioni matriciali
- Le soluzioni sono autofunzioni dell'equazione di Dirac
 - Spettro continuo, funzioni non normalizzabili
 - Le soluzioni normalizzabili si costruiscono come pacchetti

$$\psi(x) = \int \frac{d^3\mathbf{p}}{(2\pi)^{3/2}} \sum_{r=1,2} \left[b(\mathbf{p}, r) u(\mathbf{p}, r) e^{-ip \cdot x} + d(\mathbf{p}, r) v(\mathbf{p}, r) e^{+ip \cdot x} \right]$$

- Si può verificare[†] che uno stato iniziale localizzato (ad esempio una distribuzione gaussiana $\times w(0,1)$), ha una rappresentazione che contiene sia energie positive che negative
- †Greiner W. Relativistic Quantum Mechanics. Wave Equations, 3rd ed. Springer cap. 8, es. 8.5

Proprietà delle matrici γ

- Le matrici γ hanno alcune delle proprietà delle matrici α e β
 - Traccia nulla, autovalori +1
- A differenza delle matrici lpha e eta le matrici γ^k (k=1,3) non sono hermitiane

$$\gamma^{0\dagger} = \beta^{\dagger} = \beta = \gamma^0$$

$$\gamma^{k\dagger} = (\beta \alpha_k)^{\dagger} = \alpha_k^{\dagger} \beta^{\dagger} = \alpha_k \beta = -\beta \alpha_k = -\gamma^k$$

Queste relazioni possono essere unificate

$$\gamma^{\mu\dagger} = \gamma^0 \gamma^\mu \gamma^0$$

 Risulta molto utile anche l'aggiunto spinoriale (definito per una matrice qualsiasi, non solo per γ^{μ})

$$\boxed{\overline{\gamma^{\mu}}} \equiv \gamma^0 \gamma^{\mu\dagger} \gamma^0 \qquad \boxed{\phantom{\gamma^{\mu}}} \equiv \gamma^{\mu}$$

$$\boxed{\frac{}{\gamma^{\mu}} \equiv \gamma^{\mu}}$$

• Proprietà dell'aggiunto spinoriale (analoghe a quelle dell'aggiunto hermitiano)

$$\overline{AB} = \overline{B}\overline{A}$$

$$\overline{AB} = \overline{B}\overline{A}$$

$$\overline{aA + bB} = a^*\overline{A} + b^*\overline{B}$$

• Va sottolineato che tutte le espressioni scritte sono matrici (4×4)

Proprietà delle matrici γ

· Vedremo che è utile definire anche l'aggiunto spinoriale per uno spinore

$$\overline{\psi} = \psi^{\dagger} \gamma^0$$

Come nel caso dell'aggiunto hermitiano si tratta di un vettore-riga

$$\begin{pmatrix} \boldsymbol{\cdot} \\ \boldsymbol{\cdot} \\ \boldsymbol{\cdot} \end{pmatrix}^{\dagger} = \begin{pmatrix} \boldsymbol{\cdot} & \boldsymbol{\cdot} & \boldsymbol{\cdot} \\ \boldsymbol{\cdot} & \boldsymbol{\cdot} & \boldsymbol{\cdot} \end{pmatrix} \begin{pmatrix} \boldsymbol{\cdot} & \boldsymbol{\cdot} & \boldsymbol{\cdot} \\ \boldsymbol{\cdot} & \boldsymbol{\cdot} & \boldsymbol{\cdot} \\ \boldsymbol{\cdot} & \boldsymbol{\cdot} & \boldsymbol{\cdot} \end{pmatrix} = \begin{pmatrix} \boldsymbol{\cdot} & \boldsymbol{\cdot} & \boldsymbol{\cdot} \\ \boldsymbol{\cdot} & \boldsymbol{\cdot} & \boldsymbol{\cdot} \\ \boldsymbol{\cdot} & \boldsymbol{\cdot} & \boldsymbol{\cdot} \end{pmatrix}$$

• Una proprietà del prodotto di matrici imes spinori $A\psi$ $\left| \vdots \vdots \right| \left| \vdots \right|$

$$\overline{\overline{|\overrightarrow{i}\overrightarrow{i}\overrightarrow{i}|}} = (\cdots) \overline{|\overrightarrow{i}\overrightarrow{i}|} = \overline{\psi}\overline{A}$$

• In seguito saranno molto utili quantità scalari costruite a partire dagli spinori come ad esempio

$$\overline{u}Av$$
 $(\bullet\bullet\bullet)$ $\left|\begin{array}{c} \vdots \\ \vdots \\ \vdots \\ \end{array}\right| = (\bullet)$

Calcoliamo il suo complesso coniugato

$$(\overline{u}Av)^* = (u^{\dagger}\gamma^0 Av)^* = (u^{\dagger}\gamma^0 Av)^{\dagger} = (v^{\dagger}A^{\dagger}\gamma^0 u) = (v^{\dagger}\gamma^0 \gamma^0 A^{\dagger}\gamma^0 u)$$
$$(\overline{u}Av)^* = \overline{v}\overline{A}u = (\overline{u}Av)$$

Corrente conservata

• Studiamo adesso come definire una corrente j^μ per l'equazione di Dirac tale che $\partial_{\mu}j^{\mu}=0$

$$i\gamma^{\mu}\partial_{\mu}\psi = m\psi$$

- Procediamo come nel caso delle equazioni di Schrödinger e di Klein-Gordon
 - Moltiplichiamo a sinistra per lo spinore aggiunto hermitiano

$$\psi^\dagger = \begin{pmatrix} \psi_1^* & \psi_2^* & \psi_3^* & \psi_4^* \end{pmatrix} \qquad i\psi^\dagger \gamma^\mu \partial_\mu \psi = m\psi^\dagger \psi$$

$$i\psi^{\dagger}\gamma^{\mu}\partial_{\mu}\psi = m\psi^{\dagger}\psi$$

Scriviamo l'equazione aggiunta hermitiana

$$\left(i\gamma^{\mu}\partial_{\mu}\psi = m\psi\right)^{\dagger} \rightarrow -i\left(\partial_{\mu}\psi\right)^{\dagger}\gamma^{\mu\dagger} = m\psi^{\dagger}$$

• Moltiplichiamo a destra per ψ e sottraiamo alla prima equazione

$$i\psi^{\dagger}\gamma^{\mu}\partial_{\mu}\psi + i(\partial_{\mu}\psi^{\dagger})\gamma^{\mu\dagger}\psi = m\psi^{\dagger}\psi - m\psi^{\dagger}\psi = 0$$

• Se le matrici γ^μ fossero hermitiane $\gamma^{\mu\dagger}=\gamma^\mu$ si potrebbe scrivere $(j^\mu=\psi\ ^\dagger\gamma^\mu\psi)$

no! sbagliate

- · Possiamo però utilizzare l'aggiunto spinoriale
 - ullet Ricordiamo la definizione di aggiunto spinoriale per lo spinore ψ

$$\overline{\psi} = \psi^{\dagger} \gamma^0$$

Corrente conservata

- Ripetiamo il calcolo precedente sostituendo l'aggiunto hermitiano con l'aggiunto spinoriale
 - Moltiplichiamo l'equazione di Dirac a sinistra per l'aggiunto spinoriale di ψ

$$\overline{\psi} = \psi^{\dagger} \gamma^{0} \qquad \qquad i \overline{\psi} \gamma^{\mu} \partial_{\mu} \psi = m \overline{\psi} \psi$$

Scriviamo l'aggiunto spinoriale dell'equazione di Dirac

$$\overline{\left(i\gamma^{\mu}\partial_{\mu}\psi = m\psi\right)} \to \overline{i\gamma^{\mu}\partial_{\mu}\psi} = \overline{m\psi} \qquad -i\left(\partial_{\mu}\psi\right)^{\dagger}\gamma^{\mu\dagger}\gamma^{0} = m\psi^{\dagger}\gamma^{0} \\
-i\left(\partial_{\mu}\psi^{\dagger}\right)\gamma^{0}\gamma^{0}\gamma^{\mu\dagger}\gamma^{0} = m\psi^{\dagger}\gamma^{0} \qquad -i\left(\partial_{\mu}\overline{\psi}\right)\overline{\gamma^{\mu}} = m\overline{\psi} \qquad \overline{\left(-i\left(\partial_{\mu}\overline{\psi}\right)\gamma^{\mu} = m\overline{\psi}\right)}$$

- Moltiplichiamo a destra per ψ $-i \big(\,\partial_\mu \overline{\psi}\,\big) \gamma^\mu \psi = m \overline{\psi} \psi$
- E sottraiamo alla prima espressione $i \overline{\psi} \gamma^\mu \partial_\mu \psi + i \left(\partial_\mu \overline{\psi} \right) \gamma^\mu \psi = m \overline{\psi} \psi m \overline{\psi} \psi = 0$ $i \overline{\psi} \gamma^\mu \partial_\mu \psi + i \left(\partial_\mu \overline{\psi} \right) \gamma^\mu \psi = 0$
- Il primo membro è il 4-divergenza della corrente

$$j^{\mu} = \overline{\psi} \gamma^{\mu} \psi$$

$$\partial_{\mu} j^{\mu} = \partial_{\mu} (\overline{\psi} \gamma^{\mu} \psi) = 0$$

Corrente conservata

• Vediamo adesso se si può interpretare la corrente j^{μ} come densità di corrente di probabilità

$$j^{\mu} = (\rho, \mathbf{j}) = (\overline{\psi}\gamma^0\psi, \overline{\psi}\gamma\psi)$$

Consideriamo la densità

$$\rho = \overline{\psi}\gamma^0\psi = \psi^{\dagger}\gamma^0\gamma^0\psi = \psi^{\dagger}\psi = |\psi_1|^2 + |\psi_2|^2 + |\psi_3|^2 + |\psi_4|^2$$

- Vediamo pertanto che, a differenza di quanto avveniva per l'equazione di Klein-Gordon la densità ρ è definita positiva ed è pertanto interpretabile come densità di probabilità
 - Occorre comunque verificare che il 4-vettore j^μ abbia le corrette proprietà di trasformazione per una trasformazione di Lorentz
 - · Lo vedremo in seguito
- Approfondiamo un punto legato alla normalizzazione degli spinori
 - Fino a questo punto non abbiamo utilizzato la possibilità di definire la normalizzazione degli spinori $w\ (o\ u,\ v)$
- ullet La quantità ho dV deve essere invariante per trasformazioni di Lorentz
 - L'elemento di volume dV = dxdydz si contrae come $1/\gamma$ $dV \rightarrow dV/\gamma$
 - Pertanto ho deve "dilatarsi" come γ

$$\gamma = \frac{1}{\sqrt{1 - \beta^2}}$$

Normalizzazione degli spinori

• Con un calcolo diretto si può facilmente verificare che

$$w^{\dagger}(\mathbf{p},r)w(\mathbf{p},r) = \frac{2E_{\mathbf{p}}}{E_{\mathbf{p}}+m} \qquad w(\mathbf{p},r) = \begin{pmatrix} \phi_r \\ \frac{\boldsymbol{\sigma} \cdot \mathbf{p}}{E_{\mathbf{p}}+m} \phi_r \end{pmatrix}$$

- Analogamente per gli spinori di energia negativa
- Pertanto, se ridefiniamo la normalizzazione degli spinori come

$$w(\mathbf{p}, r) = \sqrt{E_{\mathbf{p}} + m} \begin{pmatrix} \phi_r \\ \frac{\boldsymbol{\sigma} \cdot \mathbf{p}}{E_{\mathbf{p}} + m} \phi_r \end{pmatrix}$$

Otterremo

$$\rho = \psi^{\dagger} \psi = w^{\dagger} (\mathbf{p}, r) w (\mathbf{p}, r) = 2E_{\mathbf{p}}$$

- Ovviamente $E_{
 m p}$ varia come γ ($E_{
 m p}=m\gamma$)
- Questa normalizzazione ha lo svantaggio di introdurre una dimensionalità
 - ullet Qualche autore utilizza la normalizzazione $2E_{_{
 m D}}/m$
 - Ha lo svantaggio che diverge per particelle con massa nulla (ad esempio i neutrini)
 - ullet In Aitchison, Hey si usano entrambe; in Peskin Schroeder si usa 2E

Normalizzazione degli spinori

- Per quanto riguarda l'ortogonalità degli spinori è facile verificare che gli spinori $w(\mathbf{p},r)$ sono fra di loro ortogonali
 - Con la normalizzazione scelta (r,q=1,4)

$$w^{\dagger}(\mathbf{p},r)w(\mathbf{p},q) = 2E_{\mathbf{p}}\delta_{rq}$$

- Per esprimere queste condizioni utilizzando gli spinori $u(\mathbf{p},r)$ e $v(\mathbf{p},r)$ bisogna utilizzare cautela
 - Gli spinori v sono definiti come (r=1,2) v(p,r)=w(-p,r+2)
 - Le condizioni di normalizzazione e ortogonalità sono pertanto (r,q=1,2)

$$u^{\dagger}(\mathbf{p},r)u(\mathbf{p},q) = 2E_{\mathbf{p}}\delta_{rq}$$
 $v^{\dagger}(\mathbf{p},r)v(\mathbf{p},q) = 2E_{\mathbf{p}}\delta_{rq}$

$$v^{\dagger}(\mathbf{p},r)v(\mathbf{p},q) = 2E_{\mathbf{p}}\delta_{rq}$$

$$u^{\dagger}(\mathbf{p},r)v(-\mathbf{p},q) = v^{\dagger}(-\mathbf{p},r)u(\mathbf{p},q) = 0$$

- ullet Notiamo incidentalmente che la normalizzazione degli spinori dipende da $oldsymbol{p}$ e pertanto dipende dal sistema inerziale in cui si osserva lo spinore
 - Le trasformazioni di Lorentz per gli spinori (che introdurremo) non sono unitarie perché non preservano la norma dello spinore

Normalizzazione usando gli aggiunti spinoriali

- Introduciamo infine le normalizzazioni degli spinori utilizzando l'operazione di aggiunto spinoriale invece della coniugazione hermitiana
 - Ad esempio, utilizzando la forma esplicita nella rappresentazione di Pauli-Dirac

$$u(\mathbf{p},r) = \sqrt{E_{\mathbf{p}} + m} \begin{pmatrix} \phi_r \\ \frac{\boldsymbol{\sigma} \cdot \mathbf{p}}{E_{\mathbf{p}} + m} \phi_r \end{pmatrix} \qquad v(\mathbf{p},r) = \sqrt{E_{\mathbf{p}} + m} \begin{pmatrix} \frac{\boldsymbol{\sigma} \cdot \mathbf{p}}{E_{\mathbf{p}} + m} \chi_r \\ \chi_r \end{pmatrix}$$

Si dimostra facilmente che

$$\overline{u}(\mathbf{p},r)u(\mathbf{p},q) = 2m\delta_{rq}$$

$$\overline{u}(\mathbf{p},r)u(\mathbf{p},q) = 2m\delta_{rq}$$
 $\overline{v}(\mathbf{p},r)v(\mathbf{p},q) = -2m\delta_{rq}$

$$\overline{v}(\mathbf{p},r)u(\mathbf{p},q) = \overline{u}(\mathbf{p},r)v(\mathbf{p},q) = 0$$

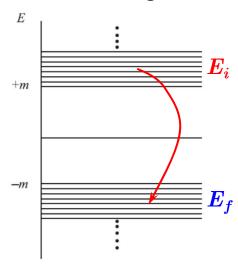
- ullet Sottolineiamo che in queste relazioni la quantità di moto $oldsymbol{p}$ ha sempre lo stesso segno
- Si può dimostrare che queste relazioni valgono indipendentemente dalla rappresentazione
- Infine questa normalizzazione è invariante rispetto al sistema di riferimento

Interpretazione delle soluzioni con $p_{ m o}=-E_p$

- Nella teoria di Dirac sarebbe possibile interpretare senza problemi le soluzioni con energia positiva
 - La densità di probabilità è definita positiva
 - L'evoluzione temporale (libera) di una funzione d'onda che contiene solo stati con $p_0>0$ non conduce all'apparizione di stati con $p_0<0$
- Tuttavia ci sono dei problemi
 - ullet Da un punto di vista matematico gli autovettori dell'Hamiltoniana sono un sistema completo solo se si includono anche gli stati con $p_0 < 0$
 - L'evoluzione di uno stato iniziale localizzato (ad esempio una distribuzione gaussiana) porta a stati che contengono sia energie positive che negative
 - Infine se si introduce una interazione diventano possibili transizioni da stati di energia positiva a stati di energia negativa
 - Sarebbero transizioni che non assorbono energia bensì la cedono

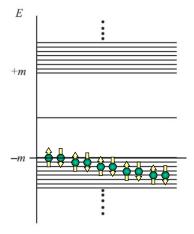
$$\Delta E = \mathbf{E_f} - \mathbf{E_i} < 0$$

- Sarebbero transizioni spontanee
- Non esisterebbero stati stabili



Interpretazione delle soluzioni con $p_{ m o}=-E_p$

- Dirac fornì una interessante soluzione a questi problemi
 - Le particelle descritte dall'equazione di Dirac sono fermioni
 - Obbediscono al principio di esclusione di Pauli



- Dirac ipotizzò che tutti gli stati con energia negativa fossero occupati da elettroni
 - Introdusse così un "mare" di particelle con energie negative
 - Il mare ha una energia totale infinita $(E=-\infty)$
 - Il mare ha una carica infinita $(\mathbf{Q} = -\infty)$

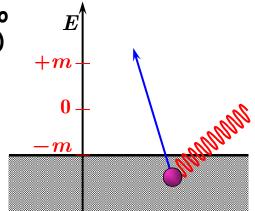
- Non possono esserci transizioni spontanee a stati di energia negativa: tutti gli stati sono occupati
- Se uno stato fisico viene descritto rispetto a questo "mare" si giunge ad una descrizione accettabile e consistente

Interpretazione delle soluzioni con $p_{\rm o}=-E_n$

- Consideriamo un sistema nel quale inizialmente ci sia solo il mare (tutti gli stati di energia negativa sono completi)
 - Supponiamo che un fotone ceda al sistema una quantità di energia sufficiente per una transizione
 - ullet Da uno stato con energia negativa $-E_{
 m k}\,,\,-{
 m k}$
 - Ad uno stato con energia positiva
 - Il bilancio energia-momento è

$$E_{\gamma} + (-E_{\mathbf{k}}) = E_{\mathbf{p}} \longrightarrow E_{\gamma} = E_{\mathbf{p}} + E_{\mathbf{k}}$$

$$\mathbf{p}_{\gamma} + (-\mathbf{k}) = \mathbf{p} \longrightarrow \mathbf{p}_{\gamma} = \mathbf{p} + \mathbf{k}$$



- Nello stato finale abbiamo
 - ullet Un elettrone di carica -|e|, momento ${f p}$ spin s ullet Abbiamo creato una particella
 - Il mare ha perso una particella
 - Si è creata una buca (hole)
 - La sua carica diminuisce di -|e|
 - La sua energia diminuisce di $(-E_{\rm k})$
 - Il suo momento diminuisce di (-k)
 - ullet Il suo spin diminuisce di s

- Nel sistema mare
 - La carica aumenta di |e|
 - L'energia aumenta di $E_{
 m k}$
 - ullet Il momento aumenta di ${\bf k}$
 - Lo spin del mare diventa -s
- Abbiamo creato un'antiparticella con numeri quantici |e|, m, $E_{\rm k}$, k, -s

$$|e|, m, E_k, k, -s$$

Interpretazione delle soluzioni con $p_{ m o}=-E_p$

Con questa interpretazione riconsideriamo gli spinori con energia negativa

$$v(\mathbf{p},r) = \begin{pmatrix} \frac{\boldsymbol{\sigma} \cdot \mathbf{p}}{E_{\mathbf{p}} + m} \chi_r \\ \chi_r \end{pmatrix}$$

- ullet Rappresentano una antiparticella di massa m una ullet carica +|e|
- Il 4-momento della particella è $(E_{
 m p}\,,\!{
 m p})$
 - Ricordiamo che lo spinore $v(\mathbf{p},r)$ è definito a partire dalle soluzioni w con energia negativa e dalla relazione $v(\mathbf{p},r)=w(-\mathbf{p},r)$
- ullet Se interpretiamo $v(\mathbf{p},r)$ come la funzione d'onda della buca allora
 - Lo spinore $v(\mathbf{p,1})$ rappresenta uno stato con spin down $\chi_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$
 - Lo spinore $v(\mathbf{p,2})$ rappresenta uno stato con spin up $\chi_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$
- Notare la corrispondenza fra valore "fisico" dello spin e numero dello stato
 - Inversa rispetto agli stati di energia positiva