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that the energy-momentum-conserving & function implies that
q = pb = Po=Pa~ Pa

Can we get a diagrammatic interpretation of our result? We have
written it in a way which suggests what the diagram should be. We
already know that the (p, + pi)* and (pp + pp)” bits are associated
with emission or absorption vertices; and we know that in this process
there are no free photons in the initial or final states. Therefore the
photon must be emitted from one particle and absorbed by the other, as
in figure 5.4 (note that there are two ways in which this can happen). In
that case, the —g,,/q? part must somehow correspond to the sum of the
two processes shown in figure 5.4! We shall pursue this in more detail in
§5.6. For the moment, it is high time that we calculated a cross section.

(a) (b)

b bl
Figure 5.4 The two possible one-photon exchange processes: in (a) particle ‘a’
emits the photon and particle ‘b’ absorbs it, while in (b) particle ‘b’ emits and
particle ‘a’ absorbs.

5.4 Cross section for two-particle scattering

Consider the general two-body process 1+ 2— 3 + 4, where now the
numerals label the momenta of the particles. We must first decide on
the normalisation of our wavefunctions. We have defined plane wave
solutions

i = Nje™»* 5.74)
¢

so that the corresponding probability density for a positive-energy KG
particle is

pi =1 a¢i) - (%k

¢i( ot Y

Instead of choosing to normalise our wavefunctions to one particle in a
box of volume V, as in NRoM, we shall normalise instead to 2E particles
in a volume V. This is in accord with the fact that p; is the time

)¢i] = 2N2E;. (5.75)
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component of a 4-vector and is therefore called a ‘covariant normalisa-
tion’ condition. Either choice is perfectly viable so long as one uses the
appropriate flux and phase space factors.

With the condition

fpid3x = 2El (576)
we obtain the result
N; = V12, 5.77)

The three steps to derive the cross section may be summarised as
follows.
(1) The transition rate per unit volume is defined by

Pﬁ = l-ﬂﬁ|2/VT ’ (578)

where T is the time of interaction. Either by cavalierly ‘squaring the 6
function’ or rigorously using wavepackets (as discussed, for example, in
Chapter 3 of Taylor (1972)), one derives

Ps = 2m)*6*(p3s + ps — p1 — p2)(N1N2N3NL)?|F|2 (5.79)
where (cf 5.73)
Ag = —i(27r)464(p3 + ps—p1— P2)N1N2N3N4'F~ (5-80)

(2) In order to obtain a quantity which may be compared from
experiment to experiment, we must remove the dependence of the
transition rate on the incident flux of particles and the number of target
particles per unit volume.

(a) The flux of beam particles incident on a stationary target is just the
number of particles per unit area which can reach the target in unit
time. Thus the ‘active’ volume is just |p|, the velocity of the beam
particles, and we have normalised to 2E particles in a volume V, so
the flux factor is

2E,

v

(b) The number of target particles per unit volume is just 2E,/V
(actually 2m,/V for particle 2 at rest).

v (5.81)

To obtain a normalisation-independent quantity, we therefore divide Pg
by the flux factor and by the number of target particles per unit volume,
i.e. by the factor

2E-2F,
v: o
(3) For a physical scattering cross section we must sum over the

o] (5.82)



144 ELECTROMAGNETIC INTERACTIONS OF SPIN-0 PARTICLES

available two-particle final states. For one particle in a volume V' this
amounts to integrating over the usual two-body phase space factor

P (5.83)

d3 d
ey ey’
For our normalisation of 2E particles in volume V the available phase
space per particle is thus

v dps v d’p,

. 5.84
(2m)® 2E; (2m)® 2E4 (584
Putting all this together, the cross section is given by
V2 v &p; v &
do = Pg Ps bs (5.85)

2E-2E,|v| (2m)® 2E; (2m)} 2E,’
Using our expressions for Pg and N;, the final result is
|F|? d’ps  d’pys
= —— (2m)*6* + - - .
2B, 2E,]p| 7 Ps F Pe = P = P S S E )
(5.86)

do

Note that:

(i) the factors involving the normalisation volume V have cancelled;

(i) we can write the flux factor for collinear collisions in invariant
form using the relation (easily verified in a particular frame (see
problem 5.4))

E\Eslv| = [(p1-p2)? — mim3]'~; (5.87)

(iii) the four-dimensional & function together with the phase space
(including the (1/2E) factors) is sometimes called Lorentz in-
variant phase space:

dLips(s; p3, p4) (5.88)
where the Mandelstam s variable is
s =(p1+p2)? (5.89)

(see e.g. Perkins 1987).

5.5 Explicit evaluation of the a + b — a’ + b’ cross section

We identify p, = p1, pa = p3, po» = p2 and p;, = p4 in §5.3, and apply
the results of §5.4. The differential cross section is

o I
4(p1-p2)? — mim3]'?

dLips(s; p3, pa) (5.90)
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where the invariant amplitude F for the electromagnetic interaction is

F = (esev/q*)(p1 + p3)(p2 + pa) (5.91)
and the two-particle Lorentz invariant phase space is

dLips(s; ps, pa) = 2m)*6*(ps + ps — p1 — p2)
o 1 d’ps 1 d’py
(2m)® 2E5 (2m)3 2E4

(5.92)

To gain familiarity with these factors, we shall evaluate these express-
ions in the centre-of-momentum (cMm) frame defined by

pr+p2=p3+ps=0. (5.93)

The scattering is described by a cm scattering angle 6Ocy, as in
figure 5.5, and the four 4-momenta are given by

b= (F R s L= (E , ’
pi=(Ei p) ps=(E,p) (5.94)
pg = (EZ’ _P), P'J = (E2, _P,)
where
lpl=1Ip'l=p (5.95)
and

W=E +E;=E;+ Es=(p*+ m)2 + (p? + mdH)'2 (5.96)

is the cm energy.

\ Ocm

h

Figure 5.5 Two-body scattering in the cm frame.

5.5.1 Evaluation of two-body phase space in the cm frame

Before we specialise to the cMm frame, it is convenient to simplify our
expression for dLips:

: 1 d’p; d°p,
dLips(s; p3, p4) = Wé"(p’s + ps—p1— p2) E. E. .(5.97)
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Using the 3-momentum & function, we can eliminate the integral over
d3p4:

d’py s 1
f?é (p3 + Ps — P1— pg) = ?6(E3 + E4 - E1 - Ez) (598)
4 4

On the right-hand side p, and E, are no longer independent variables
but are determined by the conditions

ps=pi+p2—Pp3 Eq = (lpaf?> + m)'2. (5.99)
Next, convert d°p3 to angular variables

where p3 now stands for the magnitude of the 3-momentum. The energy
and momentum are related by

E?= p3+ mji (5.101)
so that
EidE; = pidps. (5.102)
With all these changes we arrive at the result (valid in any frame)
dLips(s: ps, po) = ——d@ 22 S(Ey + By - B, — Ex). (5.103)
(4m)? E,
Now specialise to the cm frame for which
E?=p?+ mji (5.104)
E?=p?+ m3 (5.105)
and
EidE; = pdp = E4dE,. (5.1006)
Introduce the variable
W =E;+ E;4 (5.107)

(since E; + E, is only constrained to be equal to W = E; + E; after
performing the integral over the energy-conserving 6 function). Then

! !

w w
' = dE; + dE; = ——pdp = —dE 5.1
dW’' = dE; + dE, E3E4p p E, 463 (5.108)

where we have used equation (5.106) in each of the last two steps. Thus
the factor

dE;

pPs3 E.

6(E3 + E4— E{ — Ez)

becomes



55THE a + b— a’ + b’ CROSS SECTION 147

p Cwn o P
S dWS(W' = W) = - (5.109)

and we arrive at the important result

dLips(s; p3, pa) = (4717)2 —")’—V— (5.110)
for two-body phase space in the cm frame.
5.5.2 Flux factor in the cm frame
Define
f2=(prp2)* — mim3. (5.111)
Using the cM result
prp2=E\E; +p° (5.112)

a straightforward calculation shows that
f=pW. (5.113)

We can now write down the cm differential cross section

= —|F|2—— 114
do |F| (4 ¥ WdQ 6 )
The result is
do _ 1 )
Olem = (877W)21F| . (5.115)

Before we evaluate |F|? let us convert this to invariant form as an
exercise in changing variables. The 4-momentum transfer squared is
defined as the Mandelstam ¢ variable:

t=q%=(p1—p3)’=(ps— p2)* (5.116)
In the cMm frame this reduces to the relation
t = —2p*(1 — cosfcm) (5.117)
and hence
dr = 2p2d (cos Ocy). (5.118)

For spinless particles there is cylindrical symmetry about the beam axis

dQCM = 27Td(COS HCM) (5119)
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and so we arrive at the relation
d_= d
dt  p? dQcm )

Thus the two-body differential cross section in invariant form is easily
shown to be

(5.120)

do 1 1
— = F|? 5.121
dr 64n (Pl'P2)2 - m%m%‘ l ( )
or, in terms of s,
do 1 1 |
— = FJ2. 5.122
dr 167 [s — (m; + my)?][s — (m; — mZ)Z]I | ( )

These expressions are valid for any unpolarised 2 — 2 elastic scattering
reaction. For a + b scattering it remains only to calculate |F|?:

€.6p\2
|F|* = ( pe ) [(p1 + p3)(p2 + P> (5.123)
For elastic scattering the definitions
s =(p1+ p2)® = (ps + ps)? (5.124)
u=(p1—ps’=(p2-ps3)? (5.125)
lead to the relations
2p1'p2 =2p3ps=s — mi— m3 (5.126)
2p1'ps =2prp3 =mi+ mi— u. (5.127)
Finally we derive the result for e, = e, = e:
|F|? = (dma/t)*(s — u)? (5.128)
where we have explicitly set
o = e?fdr = (5.129)

the fine structure constant in natural units (see Appendices B and C).

It is straightforward to evaluate these invariant expressions in any
desired frame. As an example, we consider the case in which ‘a’ is a
particle of charge eZ, and mass m, and ‘b’ is a particle of charge eZ,
and mass M, and we take m << M. This will then simulate either the
electromagnetic scattering of a light particle by a heavy nucleus, say, or
a ‘spinless’ electron by a ‘spinless’ proton (the complications of spin will
occupy us in Chapter 6). We shall work in the laboratory frame

py = (M, 0) (5.130)
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in which ‘b’ is initially at rest. The light particle 4-vectors are
Pa = (wa, k) = (|k|, k) (5.131)
pa = (wh, k') = (lk'], k') (5.132)

neglecting m. Then

=2|k|-|k’|-(1 — cos 6)
—4[k|-|k’|- sin26/2. (5.133)

If we write p}, = py, + (pa — p4) and square it, we obtain 2py-g + q* =
0, from which follows

t=q*= (p. — pi)?

|k|/|k'| = 1 + (2|k|/M) sin?6/2. (5.134)
If we now make the further approximation
k| <« M (5.135)
we can set |k| = |k’| and write
t = —4|k|?sin? 62 (5.136)
dt = 2|k|*d(cos 6). (5.137)
The flux factor in (5.121) is
(papv)? — m*M? = M?w} = M?|k|* (5.138)
in the approximation of neglecting m. We also have
s =(pa+ pu)? = (w, + M)2 — k? = 2/k|M (5.139)
and
u=(pa— pb)? = —2/k|M (5.140)
so that
(s — u)? = 16|k|>M?>. (5.141)

Putting the pieces together yields finally
d a?Z37%
L AR el (5.142)
dQ  4|k|*sin* 6/2
where dQ = 2zd(cos ). This is recognisable as the Rutherford scattering
cross section.

We shall meet a similar laboratory frame cross section again in
Chapter 6, §6.8, where we shall need to evaluate it without making the
low-energy approximation (5.135). This is quite a tricky calculation and
is described in Appendix E.



