

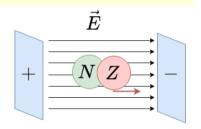
Institut de Ciències del Cosmos UNIVERSITAT DE BARCELONA

Parity violating asymmetry and dipole polarizabily: how do they reconcile with each other?

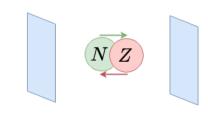
Xavier Roca-Maza

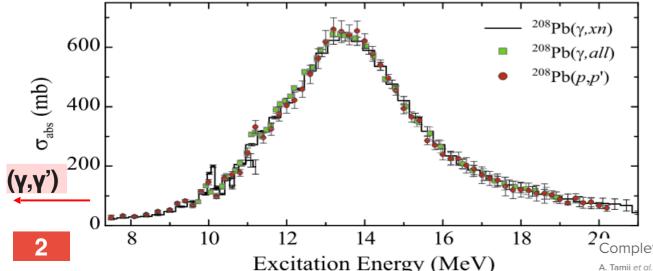
Charge and matter distribution in nuclei

CEA-Saclay, October 14th - 17th


Electric Dipole Polarizability: introduction

The electric dipole polarizability measures the tendency of the nuclear charge distribution to be distorted


$$lpha = rac{ ext{electric dipole moment}}{ ext{external electric field applied}}$$


Microscopically, it relates with the photo-absorption cross-section

$$\alpha_D = rac{\hbar c}{2\pi^2 e^2} \int rac{\sigma_{
m abs}}{\omega^2} d\omega,$$

Measured using polarized proton scattering at very forward angles (dominated by E1 and M1 well separated)

$$\alpha_D(^{208}\text{Pb}) = 19.6 \pm 0.6 \text{ fm}^3$$

Complete Electric Dipole Response and the Neutron Skin in

Electric Dipole Polarizability: theory

Theoretically, the total **photo-absorption cross section**, can be written as

$$\sigma_{\gamma-\text{abs}} = 4\pi^2 \alpha \sum_{\nu} (E_{\nu} - E_0) |\langle \nu | F_{\text{dipole}} | 0 \rangle|^2$$

Dipole operator subtract CM motion

And, thus,

$$lpha_D=2\sum_{
u
eq0}rac{|\langle
u|F_{
m dipole}|0
angle|^2}{E_
u-E_0}\equiv 2m_{-1}$$
 $rac{e^N}{e^N}\sum_{\scriptscriptstyle i=1}^{\scriptscriptstyle Z}r_iY_{\scriptscriptstyle 1M}(\hat{r}_i)-rac{e^Z}{A}\sum_{\scriptscriptstyle i=1}^{\scriptscriptstyle N}r_iY_{\scriptscriptstyle 1M}(\hat{r}_i)}$

$$\frac{eN}{A} \sum_{i=1}^{Z} r_{i} Y_{1M}(\hat{r}_{i}) - \frac{eZ}{A} \sum_{i=1}^{N} r_{i} Y_{1M}(\hat{r}_{i})$$

Considering the G.S. perturbed by an external field λF (with $\lambda \rightarrow 0$):

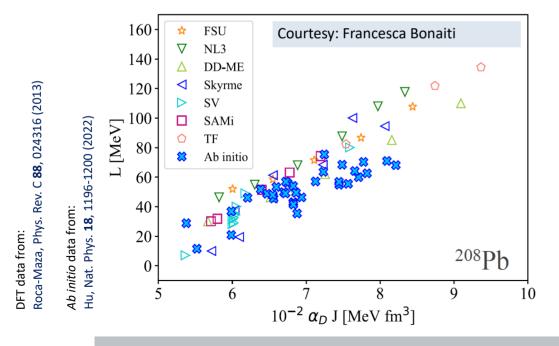
 $\langle \mathcal{H} \rangle = \langle \mathcal{H}_0 + \lambda F_{\text{dipole}} \rangle$; The variation in the expectation energy can be written as:

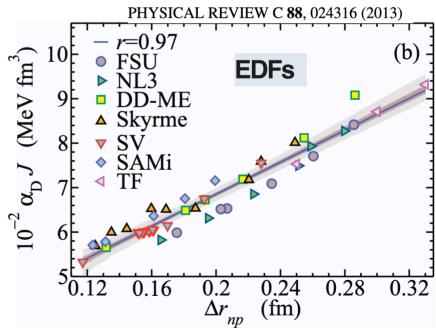
$$\delta\langle\mathcal{H}\rangle = \lambda^2 \sum_{\nu \neq 0} \frac{|\langle \nu | F | 0 \rangle|^2}{E_{\nu} - E_0} + \mathcal{O}(\lambda^3) = \lambda^2 m_{-1} + \mathcal{O}(\lambda^3)$$

$$m_{-1} = \frac{1}{2} \frac{\partial^2 \langle \mathcal{H} \rangle}{\partial \lambda^2} \Big|_{\lambda=0}$$

Dielectric Theorem

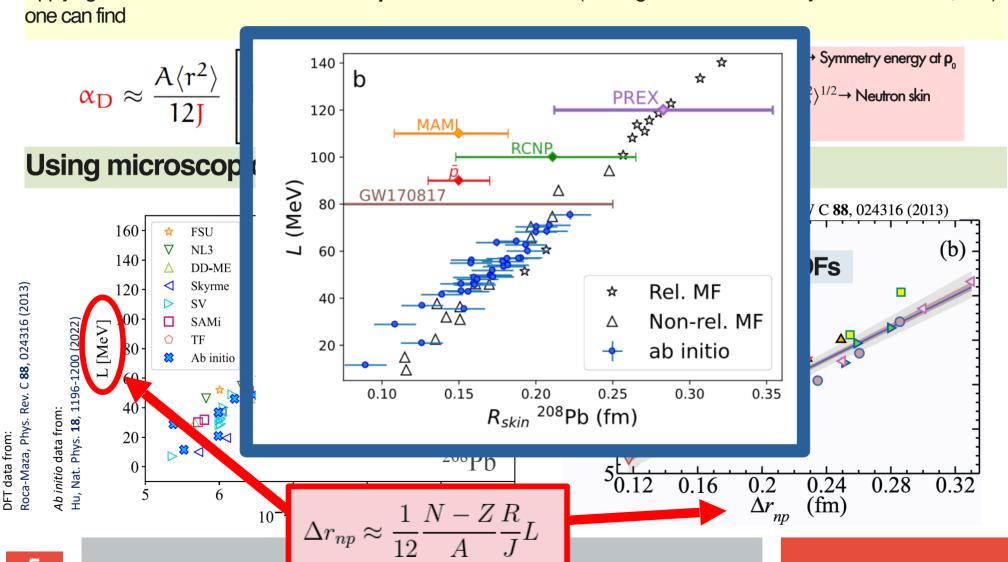
Electric Dipole Polarizability: simple model & correlations

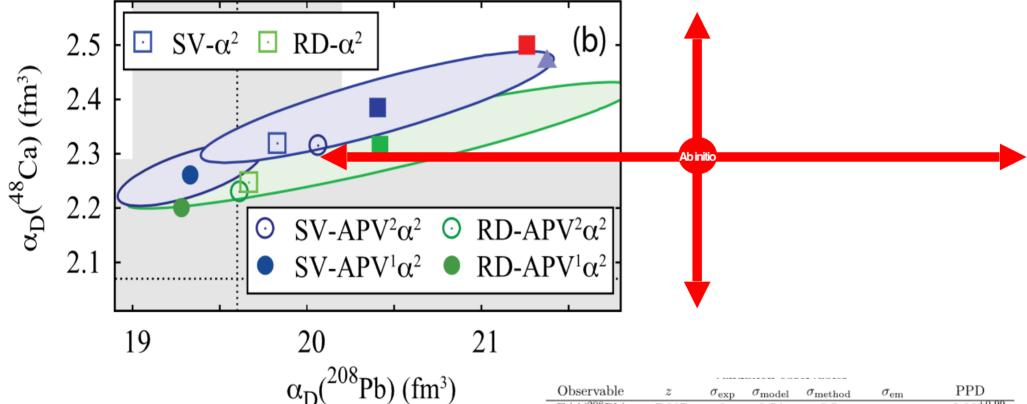

Applying the **dielectric theorem** to the **Droplet Model** Hamiltonian (first Migdal and latter on Meyer et al. NPA385, 269) one can find


$$\alpha_{D} \approx \frac{A \langle r^2 \rangle}{12 J} \left[1 + \frac{5}{2} \frac{\Delta r_{np} + \sqrt{\frac{3}{5} \frac{e^2 Z}{70 J}} - \Delta r_{np}^{surface}}{\langle r^2 \rangle^{1/2} (I - I_C)} \right] \\ \qquad \qquad \Delta r_{np} \equiv \langle r_n^2 \rangle^{1/2} - \langle r_p^2 \rangle^{1/2} \rightarrow \text{Neutron skin thickness}$$

J = e(PNM)-e(SNM)
$$\rightarrow$$
 Symmetry energy at ρ_0

$$\Delta r_{np} \equiv \langle r_n^2 \rangle^{1/2} - \langle r_p^2 \rangle^{1/2} \rightarrow \text{Neutron skin}$$
thickness


Using microscopic calculations (Energy Density Functionals & Ab initio)



Electric Dipole Polarizability: simple model & correlations

Applying the **dielectric theorem** to the **Droplet Model** Hamiltonian (first Migdal and latter on Meyer et al. NPA385, 269) one can find

Electric Dipole Polarizability in ⁴⁸Ca and ²⁰⁸Pb

Combined Theoretical Analysis of the Parity-Violating Asymmetry for $^{48}\mathrm{Ca}$ and $^{208}\mathrm{Pb}$

Paul-Gerhard Reinhard, Xavier Roca-Maza, and Witold Nazarewicz Phys. Rev. Lett. **129**, 232501 – Published 2 December 2022

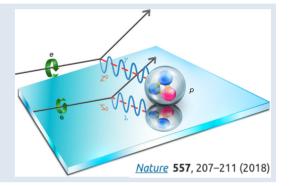
Observable	z	$\sigma_{\rm exp}$	σ_{model}	σ_{method}	$\sigma_{ m em}$	PPD
$E/A(^{208}{\rm Pb})$	-7.867	0	0.54	0.5	_	$-8.06^{+0.99}_{-0.88}$
$R_{\rm p}(^{208}{\rm Pb})$	5.45	0	0.17	0.05	_	$5.43^{+0.21}_{-0.23}$
$\alpha_D(^{48}\mathrm{Ca})$	2.07	0.22	0.06	0.1		$-8.06^{+0.99}_{-0.88}$ $5.43^{+0.21}_{-0.23}$ $2.30^{+0.31}_{-0.26}$
$\alpha_D(^{208}\text{Pb})$	20.1	0.6	0.59	0.8	_	$22.6_{-1.8}^{+2.1}$

Ab initio predictions link the neutron skin of ^{208}Pb to nuclear forces

Baishan Hu, Weiguang Jiang, Takayuki Miyagi, Zhonghao Sun, Andreas Ekström, Christian Forssén ⊠, Gaute Hagen, Jason D. Holt, Thomas Papenbrock, S. Ragnar Stroberg & Jan Vernon

Electric Dipole Polarizability: How nuclear models perform for other nuclei?

Parity Violating Asymmetry: introduction


Elastic electron scattering by nuclei:

→ Parity conserving

Exchange of γ that essentially couples to protons $\mathbf{Q}_{p}^{c}=1$; $\mathbf{Q}_{n}^{c}=0$

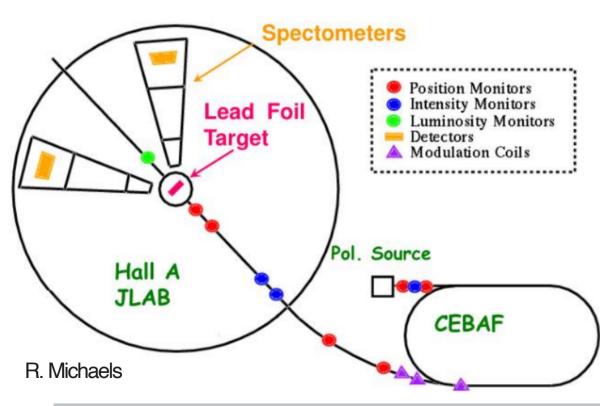
→ Parity violating

Exchange \mathbf{Z}_0 that essentially couples to neutrons \mathbf{Q}_p^W =0.07; \mathbf{Q}_n^W = -0.99

Ultra-relativistic electrons ($m_e \rightarrow 0$) with spin **aligned** (+) or **anti-aligned** (-) to the beam line, in approaching the nucleus:

One can get advantage form this interference pattern between electromag. and weak interact.

$$A_{PV} = rac{rac{d\sigma_+}{d\Omega} - rac{d\sigma_-}{d\Omega}}{rac{d\sigma_+}{d\Omega} + rac{d\sigma_-}{d\Omega}} pprox rac{ ext{Weak}}{ ext{Coulomb}}$$


Parity Violating Asymmetry: experiment

Lead and Calcium

Radius Experiments

PREx & CREx @ JLab

$$A_{PV} \sim rac{G_F}{4\sqrt{2}\pilpha}Q^2 \sim 10^{-4}(Q[{
m GeV}])^2$$

→Spectrometers ~ 5°

→e beam E ~ GeV

$$Q^2_{
m PREx} = 0.00616~{
m GeV}^2$$

$$Q^2_{\mathrm{CREx}} = 0.0297~\mathrm{GeV}^2$$

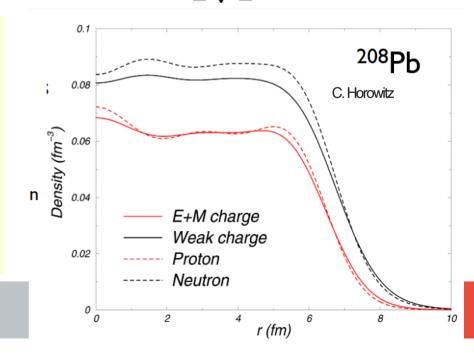
→ <u>Demanding experiment:</u>

For **10**⁶ **electrons** or more only **one** of them **interact weakly** with the nucleus

New experiment on 208Pb @ Mainz !!! (MREX)

Parity Violating Asymmetry: theory

To solve the **Dirac equation**


$$\left[ec{lpha}\cdotec{p} + V_{
m Coulomb}(ec{r}) \pm V_{
m Weak}(ec{r})
ight]\Psi_{\pm} = E\Psi_{\pm}$$

The main inputs are the **electromagnetic** ρ_{th} and **weak charge** ρ_{W} distributions

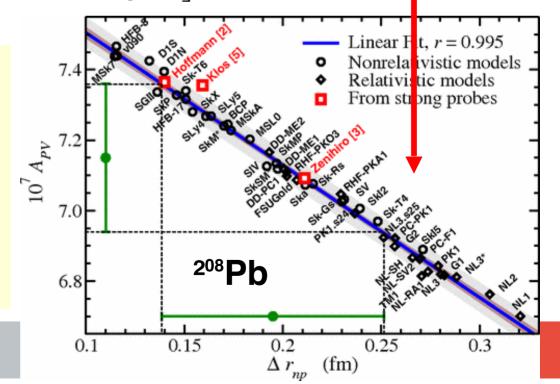
$$V_{
m Coulomb}(ec{r}) = Z lpha \int rac{
ho_{
m ch}(ec{r}')}{|ec{r}-ec{r}'|} dec{r}'$$

We need to know the **neutron and proton distributions** in nuclei and
the **electromagnetic and weak**charge **form factors** of the **neutron**and the **proton**

$$V_{
m Weak}(ec{r}) = rac{G_F}{2\sqrt{2}}
ho_{
m W}(ec{r})$$

Parity Violating Asimmetry: simple model & correlations

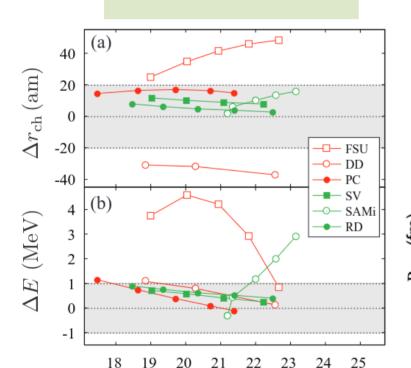
The parity violating asymmetry within the PWBA:

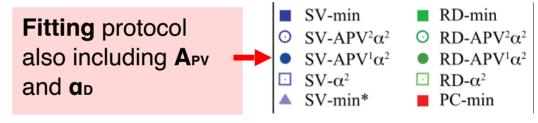

$$A_{PV}^{ ext{PWBA}} = rac{G_F Q^2}{4\sqrt{2}\pilpha} \left[\underbrace{4\sin^2 heta_W}_{pprox 1} + rac{F_n(Q) - F_p(Q)}{F_p(Q)}
ight]$$

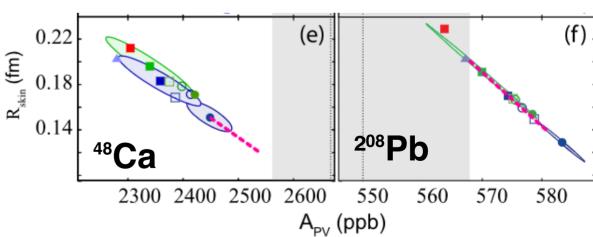
$$\stackrel{Q o 0}{\longrightarrow} rac{G_F Q^2}{4\sqrt{2}\pilpha} \Bigg[1 - rac{Q^2 \langle r_p^2
angle}{3} rac{\Delta r_{np}}{\langle r_p^2
angle^{1/2}} \Bigg] ullet$$

30% due to Coulomb distortions (PREX) does not blur **the main physics**

The parity violating asymmetry within the DWBA:

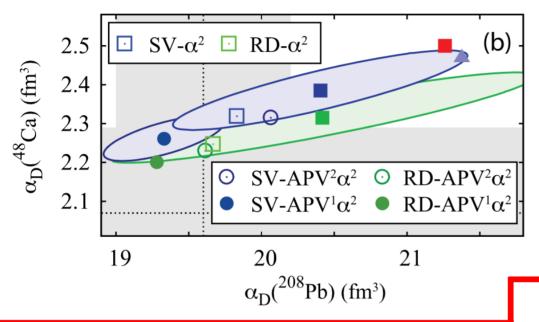

- O ♦ → Energy Density Functionals
 - □ → Expeirmental ρ_n form hadronic probes + ρ_p from e⁻ scattering


Neutron Skin of $^{208}{\rm Pb}$, Nuclear Symmetry Energy, and the Parity Radius Experiment


Parity Violating Asymmetry: measurements vs. theory

Selecting those models (we consider) well calibrated to masses and radii

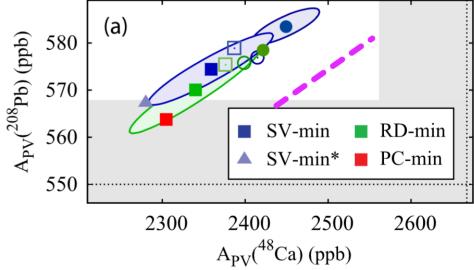
Theoretical (**EDFs** and **ab initio**) and experimental 1σ errors overlap in ²⁰⁸Pb but not in ⁴⁸Ca → **No simultaneous description**


Combined Theoretical Analysis of the Parity-Violating Asymmetry for $^{48}\mathrm{Ca}$ and $^{208}\mathrm{Pb}$

 $\alpha_{\rm D} \, ({\rm fm}^3)$

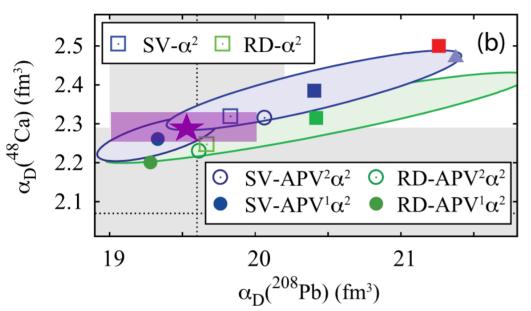
Paul-Gerhard Reinhard, Xavier Roca-Maza, and Witold Nazarewicz Phys. Rev. Lett. **129**, 232501 – Published 2 December 2022 Magenta dashed lines from extrapolated $\Delta r_{\rm np}$ given in G. Hagen et al. Nature Physics 12, 186–190 (2016) and H. Bu et al. Nature Physics (2022)

Summary: model performance


A_{PV} (sensitive to Δr_{np}) and Q_D (sensitive to J and Δr_{np}) in ⁴⁸Ca and ²⁰⁸Pb

Simultaneous description of dipole polarizabilities \rightarrow point to a good understanding of symmetry energy (J) and neutron skins ($\Delta r_{\rm np}$)

Ab-initio (B. Hu) Nature Physics (2022) $\alpha_D(^{48}\text{Ca}) \ 2.30^{+0.31}_{-0.26} \ \alpha_D(^{208}\text{Pb}) \ 22.6^{+2.1}_{-1.8}$


No simultaneous description of parity violating asymmetries (ground state observable) → point to a deficient understanding of neutron skins

Magenta dashed lines from extrapolated Δr_{np} given in G. Hagen et al. Nature Physics 12, 186–190 (2016) and H. Bu et al. Nature Physics (2022)

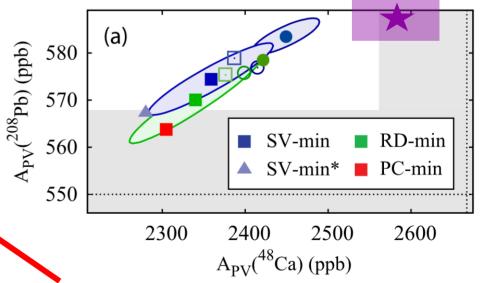
Bayesian inference Skyrme EDF: can we accommodate α_D and $A_{\rm PV}$ without compromising other observables?

 10.8 ± 0.4

Pietro Klausner, Gianluca Colò, Xavier Roca-Maza, and Enrico Vigezzi Phys. Rev. C 111 014311 (2025)

By P. Klausner

	$\alpha_D (\mathrm{fm}^3)$	m(1) (MeV fm ²)	A _{PV} (ppb)
²⁰⁸ Pb	19.5 ± 0.5	958 ± 22	589 ± 5
⁴⁸ Ca	2.30 ± 0.08	_	2591 ± 54


	B.E. (MeV)	R _{ch} (fm)	$\Delta E_{\rm SO} ({ m MeV})$
²⁰⁸ Pb	1636 ± 1.8	5.49 ± 0.03	2.34 ± 0.16
⁴⁸ Ca	417 ± 1.2	3.51 ± 0.02	1.92 ± 0.20
⁴⁰ Ca	342 ± 1.6	3.50 ± 0.02	_
⁵⁶ Ni	482 ± 1.4	_	_
⁶⁸ Ni	590 ± 1.0	_	_
¹⁰⁰ Sn	826 ± 1.6	_	_
¹³² Sn	1103 ± 1.7	4.71 ± 0.03	-
90 Zr	784 ± 1.3	4.27 ± 0.02	_
		Isoscalar resonances	
		$E_{\rm GMR}^{\rm IS}$ (MeV)	$E_{\rm GOR}^{\rm IS}$ (MeV)

 13.5 ± 0.3

 17.8 ± 0.4

²⁰⁸Ph

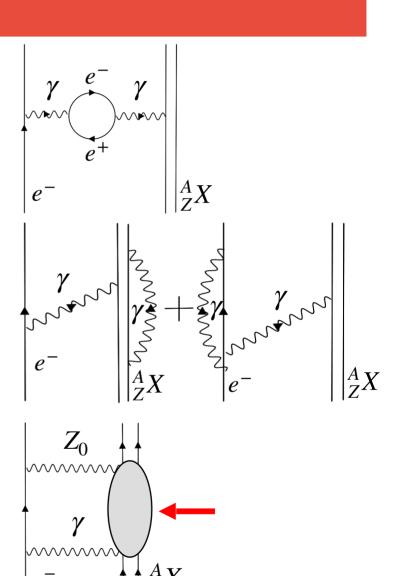
 90 Zr

Keeping ground and excited state **properties** within typical **Skyrme-EDF accuracy**

$A_{\rm PV}$ theoretical corrections?

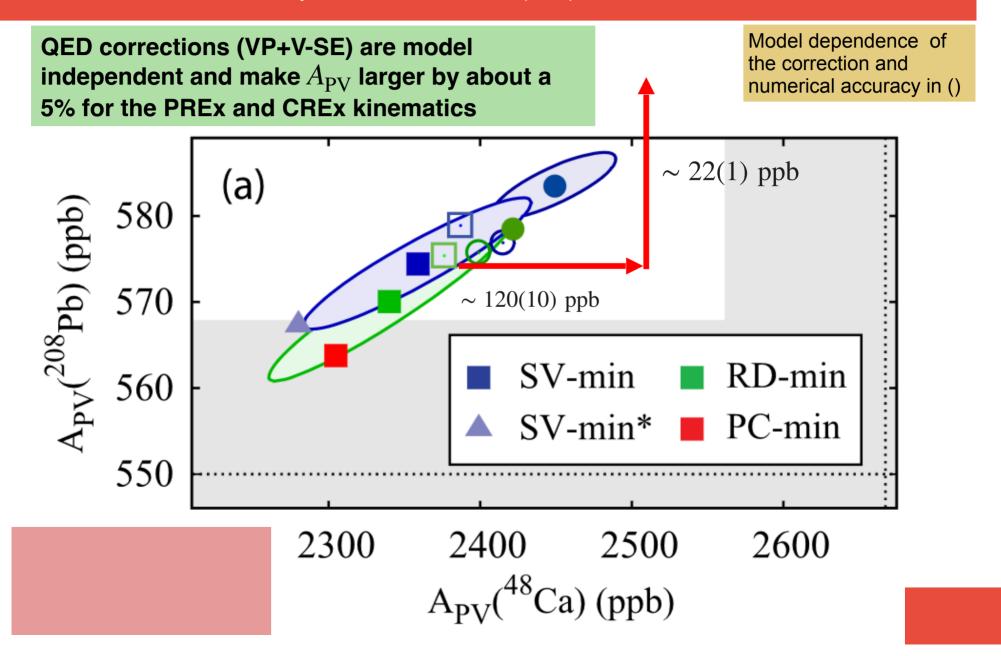
In all analysis: Coulomb potential has been considered at tree level while $Q_{\rm Weak}$ has been corrected at one-loop level (interference of the γ and Z_0 exchange):

$$[-i\overrightarrow{\alpha}\cdot\overrightarrow{\nabla} + V_{\text{Coul}} \pm V_{\text{Weak}}]\Psi_{\pm} = E\Psi_{\pm}$$

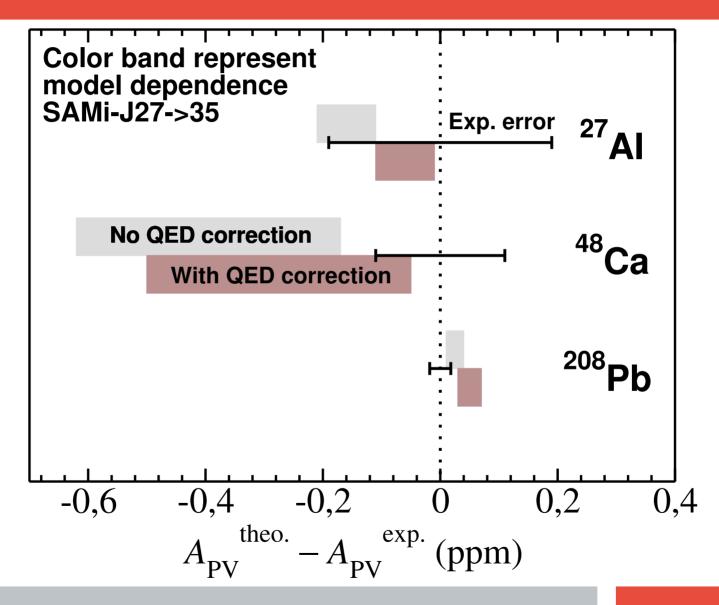

First order QED includes: vacuum polarization (VP), self-energy and e^- vertex correction (V-SE) [Jakubassa-Amundsen (2024) JPG: Nucl. Part. Phys. 51 035105]

$$[-i\overrightarrow{\alpha}\cdot\overrightarrow{\nabla} + V_{\text{Coul}} \pm V_{\text{Weak}} + V_{\text{VP}} + V_{\text{V-SE}}]\Psi_{\pm} = E\Psi_{\pm}$$

Dispersion corrections: interference of the γ and Z_0 exchange have been shown to be relevant for the $Q_{\rm weak}$ but effects on $F_{\rm weak}$ [*] have not been studied ... [Gorchtein and Horowitz PRL 102, 091806 (2009)]


... but estimated to be **smaller than QED corrections[*]** for the kinematics of PREx and CREx

[*] Jakubassa-Amundsen and XRM, arXiv:2507.15380


Leading QED corrections:

XRM, D H. Jakubassa-Amundsen Phys. Rev. Lett. 134, 192501 (2025)

Leading QED corrections:

XRM, DH. Jakubassa-Amundsen Phys. Rev. Lett. 134, 192501 (2025)

How do A_{PV} and a_D reconcile with each other?

Different ways to learn about the **neutron distribution** in atomic nuclei using **different observables** provide **different answers**

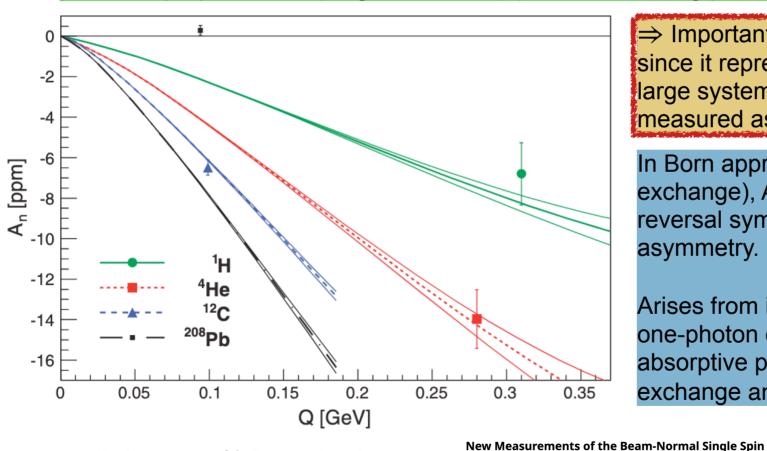
However, within 1.5–2 σ all looks fine, both from phenomenologic Energy Density Functionals and from Ab Initio

From Theory:

- → An effort to better understand the parity violating asymmetry and the beam normal spin asymmetry^[*] in ²⁰⁸Pb is needed [PREX & CREX, PRL 128, 142501 (2022)].
- → An effort to better understand the **systematics** on the **dipole polarizability** would be of interest [see e.g. Sn chain in Bassauer et al. PLB 810, 135804 (2020)].

From Experiment:

- → An effort to improve the accuracy in the **parity violating asymmetry in ²⁰⁸Pb** (and measure **other Q values**) **is needed**. Measuring other nuclei would also be desirable.
- → **Systematic** measurements of the **dipole polarizability** along **neutron rich** isotopic chains (e.g. N>74 Sn isotopes) could help testing models and improve our understanding of this observable.


Collaborators

- → Gianluca Colò (University of Milan)
- → Pietro **Klausner** (University of Milan)
- → Shihang **Shen** (Beihang University)
- → Xavier Vinyes & Mario Centelles (University of Barcelona)
- → Jorge **Piekarewicz** (Florida State University)
- → Nils **Paar** & Dario **Vretenar** (University of Zagreb)
- → Bijay K. **Agrawal** (Saha Institute of Nuclear Physics)
- → P.-G. **Reinhard** (University of Erlangen-Nürnberg)
- → Witold **Nazarewicz** (FRIB and Michigan State University)
- → Doris H. **Jakubassa-Amunsden** (Ludwig-Maximilians-Universität München)

Beam normal spin asymmetry (A_n)

(aka Alayzing power or Sherman function)

Is the asymmetry in the scattering cross section when the incident electron beam is polarized perpendicular (longitudinal $\rightarrow A_{pv}$) to the scattering plane

⇒ Important to understand A_{pv} since it represents a potentially large systematic correction to measured asymmetries.

In Born approximation (one-photon exchange), $A_n = 0$ because timereversal symmetry forbids such an asymmetry.

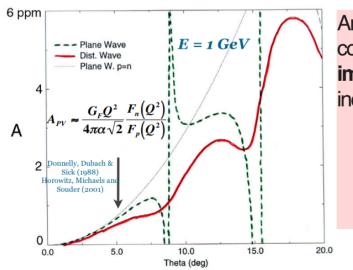
Arises from interference between one-photon exchange and the absorptive part of two-photon exchange amplitudes.

New Measurements of the Transverse Beam Asymmetry for Elastic Electron Scattering from Selected Nuclei

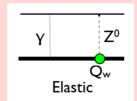
S. Abrahamyan⁴⁵, A. Acha¹⁰, A. Afanasev¹¹, Z. Ahmed³³, H. Albataineh⁶, K. Aniol³, D. S. Armstrong⁷, W.

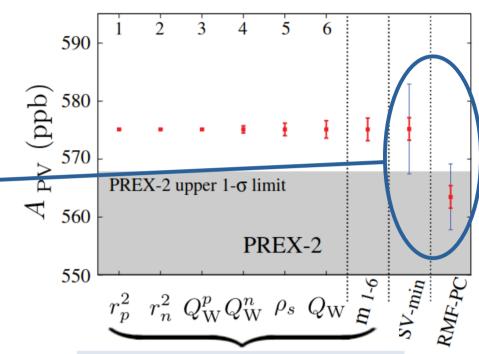
Armstrong³⁵, J. Arrington¹ et al. (HAPPEX and PREX Collaborations)

of Spin-0 Nuclei D. Adhikari¹, H. Albataineh², D. Androic³, K. Aniol⁴, D. S. Armstrong ⁶⁵, T. Averett⁵, C. Ayerbe Gayoso⁵, S. Barcus⁶, V. Bellini (10) et al. (PREX and CREX Collaborations)


Asymmetry in Elastic Electron Scattering over a Range

Phys. Rev. Lett. 128, 142501 - Published 8 April, 2022 DOI: https://doi.org/10.1103/PhysRevLett.128.14250

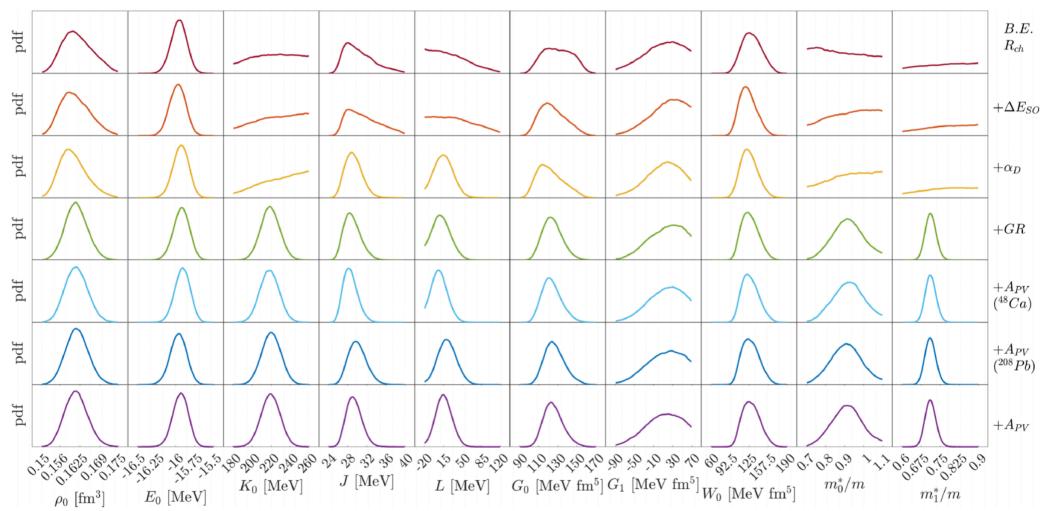

Parity Violating Asimmetry: theory


The main uncertainties come from nuclear model errors on the description of the neutron distribution (blue error bars)

→ Coulomb distortions are important (order aZ)

Are γZ_0 box corrections important? not included

Hadronic uncertainties less relevant


Parameter	Value
$\langle r_p^2 \rangle$ (fm ²)	0.726 ± 0.019
$\langle r_n^2 \rangle$ (fm ²)	-0.1161 ± 0.0022
μ_p	2.792 847
μ_n	-1.9130
$Q_p^{(W)}$	0.0713 ± 0.0001
$Q_n^{(W)}$	-0.9888 ± 0.0011
$ ho_s$	-0.24 ± 0.70
κ_s	-0.017 ± 0.004
$Q_{126,82}^{(W)}$	-117.9 ± 0.3

Information Content of the Parity-Violating Asymmetry in ²⁰⁸Pb

Paul-Gerhard Reinhard, Xavier Roca-Maza, and Witold Nazarewicz Phys. Rev. Lett. **127**, 232501 – Published 29 November 2021

Bayesian inference Skyrme EDF: can we accommodate α_D and $A_{\rm PV}$ without compromising other observables?

By P. Klausner

Possible applications to the measurement of α_D and A_{PV}

a_D and **A**_{PV} sensitive to the **neutron skin thickness** and **neutron distribution.** If accurately determined we can learn about **isospin symmetry breaking** effects in the nuclear medium thanks to good knowledge of **Isobaric Analog State**:

- → isospin symmetry breaking in medium ↔ restoration of chiral symmetry?
- → weak charge of the nucleus ↔ weak mixing angle?

Effects on **atomic energy levels** due to nuclear polarization (electronic or muonic atoms) ↔ help in accurate **determination** of electric **charge radii?**