Charged particles detectors Arrays (1)

- Basic concepts of particle detection: scintillators & semiconductors
- Light charged particles \((p, \alpha, e)\) Arrays: DIAMANT, ISIS, EUCLIDES, MiniOrange
- Large Arrays: CHIMERA, INDRA (MULTICS, RingCOUNTER (Garfield))
- Heavy fragments detection: RFD (recoil filter detector), Saphir
Charged Particles identifications

Organic scintillators

energy levels

singlet triplet

Stati Vibrazionali (~ 0.15 eV)
Stati Elettronici (~ 3-4 eV)

prompt fluorescence
(from singlet state):

\[I = I_0 e^{-t/\tau} \quad \tau = \text{lifetime} \quad S_{10} \]

~ few ns

the slow component \((\tau \sim \text{ms})\)
due to delayed phosphorescence
(from triplet state)
is larger for particles with large \(dE/dx\)

\[\frac{dL}{dx} = \frac{S dE}{1 + kB \frac{dE}{dx}} \]

equazione di Birks

light yield

\(S = \text{scintillator efficiency} \)
\(kB = \text{fitting constant} \)
Inorganic Scintillators: CsI(Tl), BaF$_2$, ...

Light output:

\[L(t) = \frac{h_f}{\tau_f} \exp\left(-\frac{t}{\tau_f}\right) + \frac{h_s}{\tau_s} \exp\left(-\frac{t}{\tau_s}\right) \]

Sum of two exponential functions:
fast & slow components

1. τ_s independent of particle nature

2. $R = \frac{h_s}{(h_f+h_s)}$ increases with decreasing ionisation density

3. τ_f increases with decreasing ionisation density

\[\Rightarrow \text{it is possible to identify different particles} \]

N.B. CsI have been used at first for particle studies:
- less fragile than NaI
- good particle discrimination
Optimization of particle discrimination:

- **ballistic deficit effect:** amplitude degradation at the output of pulse shaping circuit, due to finite shaping time constant

 [N.B. the preamplifier *rise-time* corresponds to the charge collection time ⇒ full charge collection is obtained only with ∞ shaping time constant]

 \[B = 1 - F = 1 - \frac{Q_p}{Q_t} \]

 particle-type information is carried by preamplifier *rise-time* constant ⇒ ballistic deficit \(B \) depends on type of particle

Very good method for particle discrimination with CsI(Tl) + PIN photodiode detectors instead of PM tube: useful in compact geometry
CsI(Tl) + PIN photodiode detectors
15×15×3 mm³

Pulse generator
simulated α and p signals
measured signals

Figure of merit
quality of particle identification

Particle separation
down to M ~ 0.6

Energy threshold
E_α ~ 4 MeV
d_β ~ 2.5 MeV

J. Gal et al., NIMA366(1995)120
- **zero-crossing method:**

 the zero-crossing point of a **bipolar** signal depends on the pulse-shape of the original **unipolar** signal (input rise time)

 particle-type information is carried by the preamplifier **rise-time** constant

 ⇒ zero-crossing depends on type of particle

 1. different particles give different unipolar signals (different rise time)

 2. bipolar signal with zero-crossing depending on input rise time

 CR-RC-CR double differentiating circuit

 the time interval measured by **TAC** is proportional to the decay-time of the detector pulse

 Also used for particle discrimination with **CsI(Tl) + PIN** photodiode detectors
DIAMANT: EUROBALL ancillary
84 CsI(Tl) with PIN diode detectors
4π geometry
inner radius R = 32mm to 49mm

Advantages:
- high efficiency: $\varepsilon_{\text{proton}} \approx 70\%$, $\varepsilon_{\alpha} \approx 50\%$
- low energy threshold: 2 MeV for p, 4 MeV for α

Limitation:
- large dead time (long decay time of light pulse $\tau \sim 1000$ ns)
 \Rightarrow limitation in count rate
- large absorption & scattering of γ's
 \Rightarrow limitation in resolving power of Ge array

Operating mode:
DIAMANT alone: particle-xn channels
DIAMANT + Ge: particle-xn + xn channels
Charged Particles identifications by Solid State Detectors (Si, ...)

- smaller dead time ($\tau \sim$100-200 ns, compare to 1000 ns for CsI)
- good energy resolution (\sim 10-20 keV)
- limited γ-absorption
- possibility of large solid angle coverage ($\sim 4\pi$)
- large sizes, up to 20 cm2

Detection method:

1. ΔE energy loss
2. $E-\Delta E$ telecopes
3. Pulse Shape Analysis

Si detectors are preferred to Ge:

- simplicity of operation (room temperature, ...)
- lower γ-absorption ($Z_{Si}=14$, $Z_{Ge}=32$, $\rho_{Si}=2.33$ g/cm3 $\rho_{Ge}=5.32$ g/cm3, ...)
- ...
- **Si detectors, \(\Delta E \) method**

\[
\frac{dE}{dx} \propto \frac{mZ^2}{E}
\]

- useful to discriminate between few types of particles: \(p, \alpha \)
- detailed simulation studies of \(dE/dx \) in Si for various particles

\[\Rightarrow \text{different} \quad dE/dx \quad \text{for different particles} \]
Si-Ball: NORDBALL ancillary

17 ΔE Si detectors
n-type, pentagon shape

- **thickness** 170 μm
- **shielding** with absorber foils
to optimize p and α penetration
 (optimum thickness: MonteCarlo simulation)

- 4π geometry: $\Omega \sim 90\%$ 4π
- Inner radius $R = 5$ cm
- Housing sphere radius $R = 10$ cm
γ-spectra particle gated

analysis of contaminant shows

12% α interpreted as p
0.9% p interpreted as α

as a consequence of the overlapping energy distributions of p and α

T. Kuronyanagi et al., NIMA316(1992)289
Si detectors, \(\Delta E - E \) method

\[
\frac{dE}{dx} \times E \propto \frac{mZ^2}{E} \times E = mZ^2
\]

\(t \sim 100-200 \, \mu m \)

\(t \sim 1000 \, \mu m \)

Very useful method to separate ions up to \(A = 25-30 \)
ISIS/EUCLIDES: GASP/EUROBALL ancillary

40 $E-\Delta E$ Si n-type telescopes
130 μm + 1000 μm

- capacitance $C = 850$ pF, 130 pF
- shielding with Al foil (~10-20 μm) to reduce radiation damage from scattered beam ions (optimum thickness: Monte Carlo simulation)

4π geometry: $\Omega_{\Delta E} \sim 72\% 4\pi$, $\Omega_E \sim 65\% 4\pi$
Inner radius $R = 6.7$ cm

γ-spectra particle gated \Rightarrow increased selectivity Ge array

ΔE 32S(140 MeV) + 40Ca

Operating mode:
- Stand-alone
- InnerBall
- Innerball + Hector
- Neutron-Wall
- Recoil Filter Detector

efficiency: $\varepsilon_{\text{proton}} \approx 50\%$, $\varepsilon_{\alpha} \approx 40\%$
Si-Ball Berlin
(EUROBALL ancillary)

162 Si (p⁺-n-n⁺ structure)
- thickness ~ 500 µm
- Active area ~ 750 mm²

G. Pausch et al., NIMA365(1995)176
Dedicated Arrays: CHIMERA

Multifragmentation, transition liquid-gas

Heavy Ion Reactions 10 MeV/A – 1 GeV/A

E*~ 250-350 MeV, 4 ≤ T ≤ 8 MeV

- large number of particles
- several Z and A
- wide dinamic energy range

Caloric curve of the nucleus

Caloric curve of the water

Multifragmentation: T≈5 MeV, E*≈4-5/A MeV

Vaporization: T>6 MeV, E*>10/A MeV

CHIMERA
(GANIL, LNS, GSI(?))

1192 ΔE-E Si-CsI(Tl) telescopes

Si thickness $\sim 300 \, \mu$m
CsI(Tl) thickness $\sim 10 \, $cm

9 rings in forward direction
sphere Inner radius $R = 40 \, $cm

Large scattering chamber

unique device for:
- granularity (1192 mod.)
- low energy threshold ($\sim 250 \, \text{keV/A for H.I.}$)
- efficiency ($\sim 95\%$)

good event reconstruction even with high multiplicity

\Rightarrow ΔE-E, E-TOF, PSD in CsI(Tl)
Identification method

\[\Delta E - E \rightarrow Z, E \quad \text{and} \quad \Delta E - \text{TOF} \rightarrow M, E \]

- **Si-\(\Delta E\) (high gain)**
- **Si-\(\Delta E\) (low gain)**

CSI-Fast

- **PSD**
- **CsI(Tl)**

H.F. Cyclotron

100 ns

HF Start

Si

300\(\mu\)m

10cm

(Pd)18x18mm\(^2\)

Ident. method

- **Cyclotron**
- **CSI(Tl)**
- **Si**
- **Si-\(\Delta E\)**

4He

6He

3He

Li

H.I.

PSD

HF Start

100 ns

HF Start

Si

300\(\mu\)m

10cm

(Pd)18x18mm\(^2\)

Cyclotron
Other Dedicated Arrays for charged particles:
MULTICS (+MEDEA, LNS), Ring Counter (+GARFIELD, LNL)

Heavy Ion Reactions at intermediate energy
10 MeV/A - 100 MeV/A

low energy threshold + high energy resolution

MULTICS
48 modules
3 stages telescope