A frequentist analysis of solar neutrino data

M.V. Garzelli*, C. Giunti

INFN, Sezione di Torino, Dipartimento di Fisica Teorica, Università di Torino, Via P. Giuria 1, I-10125 Torino, Italy

Received 25 October 2000; received in revised form 3 April 2001; accepted 31 May 2001

Abstract

We estimate with Monte Carlo the goodness of fit and the confidence level of the standard allowed regions for the neutrino oscillation parameters obtained from the fit of solar neutrino data. The Monte Carlo estimates are significantly smaller than the corresponding standard values. Using Neyman’s method, we also calculate exact allowed regions with correct frequentist coverage assuming the standard least-squares estimator of the oscillation parameters. Our results show that the standard allowed region around the global minimum of the least-squares function is a reasonable approximation of the exact one, whereas the size of the other regions is underestimated in the standard method. © 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

The standard method to analyze solar neutrino data in terms of neutrino oscillations consists in performing a least-squares fit. However, for the reasons described in Section 2 the standard least-squares analysis of solar neutrino data is approximate from a statistical point of view.

In this paper we present statistical methods based on Monte Carlo numerical calculations that allow to improve the implementation of the least-squares fit of solar neutrino data. In Section 2 we review the standard method and we discuss why its approximate assumptions could lead to significant inaccuracy in the results. In Section 3 we present a Monte Carlo method that allows to estimate the goodness of fit of solar neutrino data. In Section 4 we present a Monte Carlo method that allows to estimate the confidence level of the usual allowed regions in the space of the neutrino oscillation parameters. In Section 5 we present an implementation to solar neutrino analysis of the classical frequentist Neyman method that allows to calculate exact confidence regions with correct coverage.

Since the purpose of this paper is to illustrate different methods for the statistical analysis of solar neutrino data, we consider for simplicity only the data relative to the total rates measured in the Homestake [1] and Super-Kamiokande [2] experiments, and the weighted average of the total rates measured in the two gallium experiments GALLEX [3] and SAGE [4]. The values of these rates are given in Table 1 of Ref. [5]. Updated results of the Super-Kamiokande experiments and first results of the new GNO experiments have been presented in the recent Neutrino 2000 conference [6]. Since the numerical calculations presented here take a long time and were started before the Neutrino 2000 conference, we do not take into account these new results.
account the new data. A complete analysis including the new data and the Super-Kamiokande data relative to the electron energy spectrum and the zenith-angle distribution is under way and will be published elsewhere [7].

Neutrino oscillations\(^1\) depend on the mass-squared difference \(\Delta m^2 \equiv m_2^2 - m_1^2\) and on the mixing angle \(\theta\), that is restricted in the interval \([0, \pi/2]\). Traditionally solar neutrino data have been analyzed in terms of the parameters \(\Delta m^2\) and \(\sin^2 2\theta\), that determine the probability of neutrino oscillations in vacuum. However, it has recently been shown that the parameter \(\tan^2 2\theta\) is more convenient for finding the allowed regions in the interval \(\pi/4 \leq \theta \leq \pi/2\) when matter effects are important [10,11].\(^2\) Moreover, the parameter \(\tan^2 2\theta\) allows a better view of the regions at large mixing angles with respect to the usual parameters \(\sin^2 2\theta\). Hence, in the following we analyze the solar neutrino data in terms of the parameters \(\Delta m^2\) and \(\tan^2 2\theta\).

Our calculation of the theoretical event rates follows the standard method described in several papers for matter-enhanced MSW [16] transitions [17–19] and vacuum oscillations [19,20]. We calculate the MSW survival probability of \(\nu_e\)'s in the Sun using the standard analytic prescription [9,17,18,21] and the level-crossing probability appropriate for an exponential density profile [17,22]. We calculate the regeneration in the Earth using a two-step model of the Earth density profile [23–27], that is known to produce results that do not differ appreciably from those obtained with the correct density profile. We have used the tables of neutrino fluxes, solar density and radiochemical detector cross-sections available in Bahcall’s web page [28]. For simplicity we have neglected the matter effects that slightly affect the vacuum oscillation solutions of the solar neutrino problem, as discussed in Refs. [29,30].

2. Standard statistical analysis

The traditional way to find the values of the neutrino oscillation parameters \(\Delta m^2\), \(\tan^2 2\theta\) allowed by solar neutrino data is to perform a least-squares fit, often called “\(\chi^2\) fit”. In this method the estimates of the parameters \(\Delta m^2\), \(\tan^2 2\theta\) are obtained by minimizing the least-squares function

\[
X^2 = \sum_{j_1,j_2} \left(R_{j_1,j_2}^{(\text{thr})} - R_{j_1,j_2}^{(\text{exp})} \right) \left(V^{-1} \right)_{j_1,j_2} \left(R_{j_1,j_2}^{(\text{thr})} - R_{j_1,j_2}^{(\text{exp})} \right),
\]

where \(V\) is the covariance matrix of experimental and theoretical uncertainties, \(R_{j_1,j_2}^{(\text{exp})}\) is the event rate measured in the \(j_1\)th experiment and \(R_{j_1,j_2}^{(\text{thr})}\) is the corresponding theoretical event rate, that depends on \(\Delta m^2\) and \(\tan^2 2\theta\).

The standard method for the calculation of the covariance matrix \(V\) is the one presented in Refs. [31,32], in which the independent uncertainties \(\sigma_i^2\) of the experimental rates \(R_{j_1,j_2}^{(\text{exp})}\), and the uncertainties of the theoretical rates \(R_{j_1,j_2}^{(\text{thr})}\) are added in quadrature. Here we use this method, with the only difference that we assume a complete correlation of the errors of the averaged cross-sections for the fluxes in each experiment [33]. Since these correlations are not known, the choice of complete correlations is the safest approach. Hence, using the notation of Refs. [31,32],\(^3\) the covariance matrix \(V\) is given by

\[
V_{j_1,j_2} = \delta_{j_1,j_2} \sigma_{j_1}^2 + \delta_{j_1,j_2} \left(\sum_{i_1,j_{11}} R_{i_1,j_{11}}^{(\text{thr})} \Delta \ln C_{i_{11}}^{(\text{thr})} \right)^2 + \sum_{i_1,j_1} R_{i_1,j_1}^{(\text{thr})} R_{i_1,j_1}^{(\text{thr})} \sum_k \Delta x_{i_1,k} \Delta x_{j_1,k} X_k^2,
\]

where

\[
R_{ij}^{(\text{thr})} = \phi_i^{\text{SSM}} C_{ij}^{(\text{thr})}
\]

is the event rate in the \(j\)th experiment due to the neutrino flux \(\phi_i^{\text{SSM}}\) produced in the \(i\)th thermonu-

\(^1\) Here we consider the minimal two-neutrino model, although more complicated models are possible (see Refs. [8,9]).

\(^2\) For the same reason the parameter \(\tan^2 2\theta\) has been employed in the framework of three-neutrino mixing [12–14] and the parameter \(\sin^2 2\theta\) has been employed in the framework of four-neutrino mixing [15].

\(^3\) The indices \(j_1,j_2 = 1,2,3\) indicate the three solar neutrino experiments GALLEX + SAGE [3,4], Homestake [1] and Super-Kamiokande [2], respectively. The indices \(i_1,i_2 = 1,\ldots,8\) denote the solar neutrino fluxes produced in the eight solar thermonuclear reactions \(pp, pep, Hep\), Be, B, N, O, F, respectively. The index \(k = 1,\ldots,11\) indicate the eleven input astrophysical parameters in the SSM (see Refs. [31,32]).
clear reaction in the Sun according to the SSM and \(C_{ij}^{\text{(thr)}}\) is the corresponding energy-averaged cross-section that depends on \(\Delta m^2\) and \(\tan^2 \theta\). The quantity \(\Delta \ln C_{ij}^{\text{(thr)}} = C_{ij}^{\text{(thr)}} / C_{ij}^{\text{MSSM}}\) is the relative uncertainty of the energy-averaged cross-section \(C_{ij}^{\text{(thr)}}\) that is taken to be approximately equal to the one calculated without neutrino oscillations.

The quantities \(X_k\) are the input astrophysical parameters in the SSM, whose relative uncertainties \(\Delta \ln X_k\) determine the correlated uncertainties of the neutrino fluxes \(\phi_{\nu_i}^{\text{MSSM}}\) through the logarithmic derivatives

\[
\varphi_{ik} = \frac{\partial \ln \phi_{\nu_i}^{\text{MSSM}}}{\partial \ln X_k}.
\]

The values of \(\Delta \ln C_{ij}^{\text{(thr)}}, \varphi_{ik}, \Delta \ln X_k\) are given in Ref. [32].

Notice that, since the theoretical rates \(R_{ij}^{\text{(thr)}}\) depend on \(\Delta m^2\) and \(\tan^2 \theta\), also the covariance matrix \(V\) depends on \(\Delta m^2\) and \(\tan^2 \theta\).

In the traditional method the observed minimum \((X_{\text{min}}^2)_{\text{obs}}\) of the least-squares function (1) provides the estimate of the neutrino oscillation parameters, usually called “best-fit values”. The goodness of the fit is estimated by calculating the probability to observe a minimum of \(X^2\) larger than the one actually observed assuming for \(X_{\text{min}}^2\) a \(\chi^2\) distribution with \(N_{\text{exp}} - N_{\text{par}} = 1\) degrees of freedom, where \(N_{\text{exp}} = 3\) is the number of experimental data points (the sums over \(j_1\) and \(j_2\) in Eq. (1) are from 1 to \(N_{\text{exp}}\) and \(N_{\text{par}} = 2\) is the number of fitted parameters. Calling \(z\) this probability, one says that the fit is acceptable at 100\%\(z\) CL. If \(z\) is larger than a minimum acceptable value, usually \(\sim 10^{-2}\), the fit is considered to be acceptable and one can proceed further to determine the uncertainties in the determination of the parameters \(\Delta m^2\) and \(\tan^2 \theta\) (the allowed regions in parameter space).

The standard regions of the parameters \(\tan^2 \theta, \Delta m^2\) allowed at 100\%\(z\) CL are those that satisfy the condition

\[
(X_{\text{obs}}^2, (\tan^2 \theta, \Delta m^2) \leq (X_{\text{min}}^2)_{\text{obs}} + \Delta X^2(\beta),
\]

where \((X_{\text{obs}}^2)_{\text{obs}}\) are the observed values of \(X^2\) as a function of the neutrino oscillation parameters and \(\Delta X^2(\beta)\) is such that the probability to find \(X^2 < \Delta X^2(\beta)\) is equal to \(\beta\), in the case of a \(\chi^2\) distribution with \(N_{\text{par}} = 2\) degrees of freedom (the number of parameters). Common values for \(\beta\) are 0.90 (1.64\(z\)), 0.95 (1.96\(z\)), 0.99 (2.58\(z\)), 0.9973 (3.00\(z\)), 0.9995 (3.50\(z\)), which give \(\Delta X^2(0.90) = 4.61, \Delta X^2(0.95) = 5.99, \Delta X^2(0.99) = 9.21, \Delta X^2(0.9973) = 11.83, \Delta X^2(0.9995) = 15.35\). The corresponding allowed regions in the MSW area

\[
10^{-4} \leq \tan^2 \theta \leq 2, \quad 10^{-8} \leq \Delta m^2 \leq 10^{-3} \text{ eV}^2 \quad (\text{MSW area}),
\]

where matter effects are important [16], are shown in Fig. 1 and those in the VO area

\[
0.1 \leq \tan^2 \theta \leq 1, \quad 10^{-11} \leq \Delta m^2 \leq 10^{-8} \text{ eV}^2 \quad (\text{VO area}),
\]

where vacuum oscillations are dominant, are shown in Fig. 2. The standard classification of the allowed regions is 4 (see Refs. [5,37]): SMA for

\[\text{SMA}\]
\[\text{LMA}\]
\[\text{LOW}\]
\[\text{VO}\]
\[\text{SMX}\]
\[\text{LMA}\]
\[\text{LOW}\] the rectangular areas in the \(\tan^2 \theta - \Delta m^2\) defined, respectively, in Eqs. (6), (7), (11), (12) and (13).
Δm^2 \sim 5 \times 10^{-6} \text{ eV}^2, \quad \tan^2 \theta \sim 10^{-3}, \quad \text{LMA for}\nonumber
Δm^2 \sim 3 \times 10^{-3} \text{ eV}^2, \tan^2 \theta \sim 0.3, \quad \text{LOW for}\nonumber
Δm^2 \sim 10^{-7} \text{ eV}^2, \tan^2 \theta \sim 0.5, \quad \text{VO for}\nonumber
Δm^2 \lesssim 10^{-8} \text{ eV}^2.

The standard procedure for the analysis of solar neutrino data would be correct if the theoretical rates \(R_j^{(\text{thr})} \) depended linearly on the parameters \(\Delta m^2 \) and \(\tan^2 \theta \) to be determined in the fit and the errors \(R_j^{(\text{thr})} - R_j^{(\text{exp})} \) were multinormally distributed with constant covariance matrix \(V \). Indeed, if these requirements were realized one could prove that \(X^2 \) has a \(\chi^2 \) distribution with \(N_{\exp} = 3 \) degrees of freedom, \(X_{\min}^2 \) has a \(\chi^2 \) distribution with \(N_{\exp} - N_{\par} = 1 \) degrees of freedom, and \(X^2 - X_{\min}^2 \) has a \(\chi^2 \) distribution with \(N_{\par} = 2 \) degrees of freedom (see Refs. [34–36]). In this case the \(X^2 \) function would depend quadratically on the parameters and there would be only one allowed region with ellipsoidal form in the space of the parameters \(\Delta m^2 \) and \(\tan^2 \theta \).

In the case of solar neutrino data the gaussian distribution of experimental and theoretical uncertainties seems to be widely accepted, although it is not clear if this assumption is appropriate for the theoretical errors. On the other hand it is clear that

1. The theoretical rates \(R_j^{(\text{thr})} \) do not depend at all linearly on the parameters \(\Delta m^2, \tan^2 \theta \). This is the reason why there are several allowed regions in the \(\tan^2 \theta-\Delta m^2 \) plane (or the more traditional \(\sin^2 2\theta-\Delta m^2 \) plane) and the main reason why the allowed regions do not have elliptic form (see Refs. [5,37]).
2. The covariance matrix \(V \) is not constant, but depends on \(\Delta m^2 \) and \(\tan^2 \theta \), as remarked after Eq. (4). This fact contributes to the distortion of the allowed regions with respect to the elliptic form.
3. The errors \(R_j^{(\text{thr})} - R_j^{(\text{exp})} \) are not multinormally distributed, because although the fluxes \(\phi_{i}^{\text{SSM}} \) and the cross-sections \(C_{ij}^{(\text{thr})} \) are assumed to be multinormally distributed, their products (3), that determine the theoretical rates through the relations

\[
R_j^{(\text{thr})} = \sum_i R_{ij}^{(\text{thr})},
\]

are not multinormally distributed (see Ref. [38]).

Hence, the usual method of calculating the goodness of fit and the allowed regions in the \(\tan^2 \theta-\Delta m^2 \) plane is not guaranteed to give correct results, i.e. the goodness of fit could be significantly different from 100\% and the confidence level of the regions obtained with the prescription (5) could be significantly different from 100\%.

We believe that the largest correction is due to the non-linear dependence of the theoretical rates \(R_j^{(\text{thr})} \) from the parameters \(\Delta m^2, \tan^2 \theta \), that causes the existence of more than one local minima of the least-squares function \(X^2 \). This implies that there are more possibilities to obtain good fits of the data and the true goodness of fit is likely to be smaller than 100\%. Also, in repeated experiments the global minimum has significant chances to occur far from the true (unknown) value of the parameters \(\Delta m^2, \tan^2 \theta \), leading to a smaller probability that the allowed regions cover the true value with respect to the linear case. Hence, we expect that the true confidence level of a usual 100\% CL allowed region is smaller than \(\beta \).

In the following sections of this paper we perform a least-squares fit of the solar neutrino data using the standard \(X_{\min}^2 \) estimator for the neutrino
oscillation parameters Δm^2, $\tan^2 \theta$. We assume the usual gaussian distribution for the experimental and theoretical uncertainties. In Section 3 we estimate the goodness of fit using the Monte Carlo method, that is applicable in any case in which the distribution of the uncertainties is known (see, for example, Section 15.6 of Ref. [36]). In Section 4 we estimate with the Monte Carlo method the confidence level of the usual allowed regions in the $\tan^2 \theta - \Delta m^2$ parameter space. In Section 5 we implement the classical frequentist Neyman method for finding exact confidence regions with correct coverage at a given confidence level.

3. Goodness of fit

In order to estimate the goodness of fit, our method proceeds as follows (see, for example, Section 15.6 of Ref. [36]). We estimate Δm^2, $\tan^2 \theta$ through the minimum of X^2 in Eq. (1) and we call the observed best-fit values $\Delta m^2_{\mathrm{obs}}$, $\tan^2 \theta_{\mathrm{obs}}$. Then we assume that $\Delta m^2_{\mathrm{obs}}$, $\tan^2 \theta_{\mathrm{obs}}$ are reasonable surrogates of the true values $\Delta m^2_{\mathrm{true}}$, $\tan^2 \theta_{\mathrm{true}}$ and the probability distribution of the differences $\Delta m^2_{(s)} - \Delta m^2_{\mathrm{obs}}$, $\tan^2 \theta_{(s)} - \tan^2 \theta_{\mathrm{obs}}$ is not too different from the true distribution of the differences $\Delta m^2_{(s)} - \Delta m^2_{\mathrm{true}}$, $\tan^2 \theta_{(s)} - \tan^2 \theta_{\mathrm{true}}$ in a large set of best-fit parameters $\Delta m^2_{(s)}$, $\tan^2 \theta_{(s)} (s = 1, 2, \ldots)$ obtained with hypothetical experiments.

Using $\Delta m^2_{\mathrm{obs}}$, $\tan^2 \theta_{\mathrm{obs}}$ as surrogates of the true values, we generate N_s synthetic random data sets with the usual gaussian distribution for the experimental and theoretical uncertainties. We apply the least-squares method to each synthetic data set, leading to an ensemble of simulated best-fit parameters $\Delta m^2_{(s)}$, $\tan^2 \theta_{(s)}$ with $s = 1, \ldots, N_s$, each one with his associated $(X^2_{\mathrm{min}})_{(s)}$. Then we calculate the goodness of fit as the fraction of simulated $(X^2_{\mathrm{min}})_{(s)}$, in the ensemble that are larger than the one actually observed, $(X^2_{\mathrm{min}})_{\mathrm{obs}}$.

We calculate the synthetic data sets generating random neutrino fluxes ϕ_j with a multinormal distribution centered on the SSM fluxes ϕ_j^{SSM} and having the covariance matrix

$$
\phi_{ij}^{(\phi)} = \phi_i^{\mathrm{SSM}} \phi_j^{\mathrm{SSM}} \sum_k a_{i,k} a_{j,k} (\Delta \ln X_k)^2.
$$

We also generate random energy-averaged cross sections C_{ij} with a multinormal distribution centered on the theoretical energy-averaged cross sections $C_{ij}^{(\mathrm{thr})}$ corresponding to $\Delta m^2_{\mathrm{obs}}$, $\tan^2 \theta_{\mathrm{obs}}$ and having the completely correlated covariance matrix for each independent experiment j.

$$
\nu_{ij}^{(\phi)} = C_{ij}^{(\mathrm{thr})} \Delta \ln C_{ij}^{(\mathrm{thr})} C_{ij}^{(\mathrm{thr})} \Delta \ln C_{ij}^{(\mathrm{thr})}.
$$

Then, we calculate the rates $R_j = \sum_i \phi_j C_{ij}$. Finally, we generate random synthetic experimental rates $R_j^{(\mathrm{syn})}$ with normal distribution centered on R_j and standard deviation equal to that of the actual experimental data (σ_j). The synthetic experimental rates are inserted in the least-squares function (1) in place of $R_j^{(\exp)}$ in order to find the minimum $(X^2_{\mathrm{min}})_j$ and its associated best-fit parameters $\Delta m^2_{(s)}$, $\tan^2 \theta_{(s)}$.

The global minimum of the least-squares function (1), $(X^2_{\mathrm{min}})_{\mathrm{obs}} = 0.42$, occurs in the SMA region for $\Delta m^2_{\mathrm{obs}} = 5.1 \times 10^{-6} \text{eV}^2$ and $\tan^2 \theta_{\mathrm{obs}} = 1.6 \times 10^{-3}$, from which we obtained the estimations of the goodness of fit listed in Table 1. We first restricted the values of the mixing parameters in the area

$$
10^{-4} \leq \tan^2 \theta \leq 3 \times 10^{-2},
$$

$$
3 \times 10^{-7} \leq \Delta m^2 \leq 10^{-4} \text{eV}^2 \ (\text{SMA area}),
$$

around the SMA region, obtaining the Monte Carlo estimate of the goodness of fit reported in the SMA column of Table 1. This value is almost

<table>
<thead>
<tr>
<th>Monte Carlo estimate of the goodness of fit of solar neutrino data calculated with 10^6 synthetic data sets</th>
<th>Standard GOF</th>
<th>Monte Carlo GOF</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta m^2_{\mathrm{obs}} = 5.1 \times 10^{-6} \text{eV}^2$</td>
<td>51.8%</td>
<td>53.7%</td>
</tr>
<tr>
<td>$\tan^2 \theta_{\mathrm{obs}} = 1.6 \times 10^{-3}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In the SMA, MSW, MSW + VO columns the values of the neutrino oscillation parameters are restricted, respectively, in the SMA, MSW, MSW + VO areas (see Eqs. (6), (7) and (11)).
equal (even slightly larger) to the standard one obtained assuming a χ^2 distribution with one degree of freedom, reported in the “Standard GOF” column of Table 1. Hence, we conclude that locally the usual method to evaluate the goodness of fit is reliable.

However, when we extend the allowed region of the mixing parameters to all the MSW area (6) and when we add also the VO area (7), we obtain the values reported, respectively, in the MSW and MSW + VO columns of Table 1, which are significantly smaller than the one obtained with the standard method. As remarked in Section 2, this is mainly due to the non-linear dependence of the theoretical rates from the neutrino oscillation parameters, that implies that there are more possibilities to obtain good fits of the data with respect to the linear case. Therefore, we conclude that the standard method, although valid locally (when the allowed region of the parameters is restricted around the SMA region the linear assumption is approximately correct), is not valid in general and should not be trusted if there is more than one allowed region.

In order to check the local validity of the standard method we have also assumed that $\Delta m^2_{\mathrm{obs}}$ and $\tan^2 \theta_{\mathrm{obs}}$ have the values corresponding to the local minima of X^2 in the LMA, LOW and VO regions, restricting the values of the parameters around the corresponding areas:

$$3 \times 10^{-2} \leq \tan^2 \theta \leq 2, \quad 2 \times 10^{-6} \leq \Delta m^2 \leq 10^{-3} \text{eV}^2$$

(LMA area),

$$3 \times 10^{-2} \leq \tan^2 \theta \leq 2, \quad 10^{-8} \leq \Delta m^2 \leq 2 \times 10^{-6} \text{eV}^2$$

(LOW area),

and the VO area in Eq. (7). The results are reported in Table 2. One can see that the standard method is locally acceptable for the LMA and LOW solutions, but it largely over-estimates the goodness of fit in the case of the VO solution. This is due to the fact that the theoretical rates are highly non-linear functions of the neutrino oscillation parameters in the VO region (7), resulting in several disconnected allowed regions.

Summarizing the results of this section, we have shown that if there were only one allowed region in the space of the neutrino oscillation parameters, or if there are valid reasons to restrict the allowed region of the parameters around one of the SMA, LMA, LOW solutions, the standard method to calculate the goodness of fit is approximately reliable. On the other hand, if there are more than one allowed regions, the standard method to calculate the goodness of fit is not reliable and the goodness of fit should be estimated numerically, with Monte Carlo, as we have done. This happens if one considers the MSW region (6) of the neutrino oscillation parameters, which contains three allowed regions (SMA, LMA and LOW), or the VO region (7), that contains several allowed regions, or all the parameter space (MSW + VO).

4. Confidence level of allowed regions

In order to calculate the confidence level of the allowed regions it is necessary first to understand what is its meaning. The 100β% CL allowed regions are defined by the property that they belong to a set of allowed regions obtained with hypothetical experiments and the regions belonging to this set cover (i.e. include) the true value of the parameters with probability β.

Given the usual “100β% CL” allowed regions in the space of the neutrino oscillation parameters we

<table>
<thead>
<tr>
<th>Area</th>
<th>Standard GOF</th>
<th>Monte Carlo GOF</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMA</td>
<td>($\chi^2_{\min}/\Delta m^2_{\mathrm{obs}} = 3.46$)</td>
<td>6.3%</td>
</tr>
<tr>
<td>LOW</td>
<td>($\chi^2_{\min}/\Delta m^2_{\mathrm{obs}} = 6.53$)</td>
<td>1.1%</td>
</tr>
<tr>
<td>VO</td>
<td>($\chi^2_{\min}/\Delta m^2_{\mathrm{obs}} = 9.4 \times 10^{-11}$)</td>
<td>25.6%</td>
</tr>
</tbody>
</table>
can calculate their Monte Carlo confidence level \(\beta_{MC} \) with a method similar to the one described in the previous section for the goodness of fit. We assume that \(\Delta m^2_{\text{obs}}, \tan^2 \theta_{\text{obs}} \) are reasonable surrogates of the true values \(\Delta m^2_{\text{true}}, \tan^2 \theta_{\text{true}} \) and we generate a large number of synthetic data sets. We apply the standard procedure to each synthetic data set and obtain the corresponding 100\(\beta \)% CL allowed regions in the space of the neutrino oscillation parameters. Then we count the number of synthetic 100\(\beta \)% CL allowed regions that cover the assumed surrogate \(\Delta m^2_{\text{obs}}, \tan^2 \theta_{\text{obs}} \) of the true values. The ratio of this number and the total number of synthetically generated data set gives the confidence level \(\beta_{MC} \) of the 100\(\beta \)% CL allowed regions.

The results of our Monte Carlo estimation of the confidence level of the standard allowed regions shown in Figs. 1 and 2 are reported in Table 3. The values of \(\Delta m^2_{\text{obs}}, \tan^2 \theta_{\text{obs}} \) used as surrogates of the true values of the parameters are those of the global minimum of the least-squares function (1), given in Table 1. As we have done in the previous section for the goodness of fit, we calculated first the confidence level of the SMA region restricting the values of the parameters in the SMA area (11) (SMA column of Table 3). Then we calculated the confidence level of the SMA + LMA + LOW regions (shown in Fig. 1) restricting the values of the parameters to the MSW area (6) (MSW column of Table 3). Finally, we calculated the confidence levels of all the allowed regions in the MSW + VO area shown in Figs. 1 and 2 (MSW + VO column of Table 3).

From Table 3 one can see that the value of the confidence level of the standard SMA region calculated locally, in the SMA area (11), practically coincides with the nominal value (“Standard CL” column of Table 3). However, when the allowed values of the parameters are extended to the whole MSW area (6) or to the MSW + VO area, the confidence level of the allowed regions (SMA + LMA + LOW in the MSW area and SMA + LMA + LOW + VO in the MSW + VO area) is significantly smaller than its nominal value. For example, the Monte Carlo confidence level of the standard 90% CL SMA + LMA + LOW + VO region in the MSW + VO area is 86.44%.

Let us consider now the possible existence of a reason to restrict the values of the oscillation parameters in the LMA, LOW, or VO area (defined, respectively, in Eqs. (7), (12) and (13)). In this case, if the local goodness of fit is considered to be acceptable, one can calculate the corresponding standard local allowed regions of the parameters with the prescription (5) in which \((X^2_{\text{min}})_{\text{obs}} \) is the observed local minimum of the least-squares function (1). Considering the actual value of the local goodness of fit in the LMA, LOW, and VO areas given in Table 2 to be acceptable, the corresponding standard local LMA, LOW and VO allowed regions are those presented, respectively, in Figs. 3–5. Obviously, they are larger than the corresponding ones in Figs. 1 and 2 and they exist for any value of the confidence level, whereas, for example, in Fig. 1 there is no LOW region at 90% CL.

The Monte Carlo estimation of the confidence level of the standard local LMA, LOW and VO allowed regions is presented in Table 4. One can see that the Monte Carlo confidence levels of the

<p>| Table 3 |</p>
<table>
<thead>
<tr>
<th>Standard CL</th>
<th>Monte Carlo CL</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMA</td>
<td>MSW</td>
</tr>
<tr>
<td>90.00% (1.64(\sigma))</td>
<td>90.11% (1.65(\sigma))</td>
</tr>
<tr>
<td>95.00% (1.96(\sigma))</td>
<td>95.01% (1.96(\sigma))</td>
</tr>
<tr>
<td>99.00% (2.58(\sigma))</td>
<td>99.00% (2.58(\sigma))</td>
</tr>
<tr>
<td>99.73% (3.00(\sigma))</td>
<td>99.72% (2.99(\sigma))</td>
</tr>
</tbody>
</table>

\(^a \)The Monte Carlo confidence levels have been calculated generating \(10^6 \) synthetic data sets. The SMA, MSW, MSW + VO columns report the Monte Carlo estimations of the confidence levels calculated by restricting the values of the parameters in the SMA, MSW, MSW + VO areas (see Eqs. (6), (7) and (11)).
standard local LMA and LOW regions are similar to their nominal values (with small deviations with unpredictable sign). On the other hand, the Monte Carlo confidence level of the standard local VO region is significantly smaller than its nominal

Table 4
Monte Carlo estimate of the confidence level of the local 90%, 95%, 99% and 99.73% CL allowed regions shown in Figs. 3–5 in which the values of the parameters are restricted in the LMA, LOW or VO areas (see Eqs. (7), (12) and (13))

<table>
<thead>
<tr>
<th>Area</th>
<th>Standard CL</th>
<th>Monte Carlo CL</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMA</td>
<td>90.00% (1.64σ)</td>
<td>89.86% (1.64σ)</td>
</tr>
<tr>
<td></td>
<td>95.00% (1.96σ)</td>
<td>94.93% (1.95σ)</td>
</tr>
<tr>
<td></td>
<td>99.00% (2.58σ)</td>
<td>98.99% (2.57σ)</td>
</tr>
<tr>
<td></td>
<td>99.73% (3.00σ)</td>
<td>99.73% (3.00σ)</td>
</tr>
<tr>
<td>LOW</td>
<td>90.00% (1.64σ)</td>
<td>92.53% (1.78σ)</td>
</tr>
<tr>
<td></td>
<td>95.00% (1.96σ)</td>
<td>96.39% (2.10σ)</td>
</tr>
<tr>
<td></td>
<td>99.00% (2.58σ)</td>
<td>99.33% (2.71σ)</td>
</tr>
<tr>
<td></td>
<td>99.73% (3.00σ)</td>
<td>99.82% (3.12σ)</td>
</tr>
<tr>
<td>VO</td>
<td>90.00% (1.64σ)</td>
<td>86.29% (1.49σ)</td>
</tr>
<tr>
<td></td>
<td>95.00% (1.96σ)</td>
<td>92.99% (1.81σ)</td>
</tr>
<tr>
<td></td>
<td>99.00% (2.58σ)</td>
<td>98.68% (2.48σ)</td>
</tr>
<tr>
<td></td>
<td>99.73% (3.00σ)</td>
<td>99.69% (2.96σ)</td>
</tr>
</tbody>
</table>

*The Monte Carlo confidence levels have been calculated generating 10^6 synthetic data sets.
value. This is due to the fact that the linear approximation assumed for the calculation of the standard confidence levels is badly violated (there are several disconnected allowed VO regions).

Summarizing the results of this section, we have shown that the standard confidence levels of the allowed regions in the neutrino oscillation parameter space are approximately correct if only one of the SMA, LMA or LOW region is considered to be allowed a priori. If the oscillation parameters are restricted to the MSW area (6), the confidence levels are significantly smaller than the standard ones. If one does not impose any restriction on the values of the parameters, the confidence levels decrease further. If only the VO area is considered to be allowed, the confidence level of the local standard allowed regions is significantly smaller than the standard one, because of the multiplicity of allowed regions.

5. Exact allowed regions

In the previous section we estimated the confidence level of the allowed regions in the neutrino oscillation parameter space obtained with the standard procedure based on Eq. (5). This estimation is approximate, because it is based on the assumption of a surrogate for the unknown true values of the neutrino oscillation parameters.

Luckily, there is a well-known procedure for constructing exact allowed regions independently of the true values of the parameters. This procedure has been invented by Neyman in 1937 [39] (see also Refs. [34,40,41]). It guarantees that the resulting allowed regions have correct frequentist coverage (see Refs. [42–46]), i.e. they belong to a set of allowed regions obtained with different or similar, real or hypothetical experiments that cover the true values of the parameters with the desired probability given by the chosen confidence level. In this section we apply this method in order to find allowed regions with proper coverage for the neutrino oscillation parameters.

Neyman’s construction of exact frequentist allowed regions with $100\beta\%$ confidence level starts with the choice of appropriate estimators of the parameters under investigation. Then, for any possible value of the parameters one calculates the corresponding acceptance zone with probability β, i.e. regions in the space of the estimators that contain $100\beta\%$ of the values of the estimators obtained in a large series of trails. Several methods are available for the construction of the acceptance zones (see Refs. [34,40,43,45,46] and references therein). If the probability distributions of the estimators are known, the acceptance zones can be calculated analytically; if not, one can calculate probability distributions of the estimators and the acceptance zones with numerical Monte Carlo methods.

Once the $100\beta\%$ acceptance zone for each possible value of the parameters are calculated, the $100\beta\%$ allowed regions are simply composed by all the parameters values whose acceptance zone covers the measured value of the estimators (i.e. the actual estimate of the parameters). If the acceptance zones are composed by disconnected sub-zones, also the allowed region may be composed by disconnected allowed sub-regions. As we will see in the following, this is what happens in the case of solar neutrino oscillations.

Our implementation of Neyman’s construction goes as follows:

1. We choose the standard estimator of the neutrino oscillation parameters: the value $\tan^2\theta$, Δm^2 of the parameters in the minimum of the least-squares function (1).

2. Since the probability distribution of $\tan^2\theta$, Δm^2 for each possible value of the parameters $\tan^2\theta$, Δm^2 is not known, we calculate it numerically with a Monte Carlo.

(a) We define an appropriate grid in the 2-dimensional space of the neutrino oscillation parameters $\tan^2\theta$, Δm^2.

(b) For each Δm^2, $\tan^2\theta$ on the grid we generate a large number of synthetic data sets labeled by

5 The acceptance zones and the allowed regions become, respectively, acceptance intervals and confidence intervals in the simplest case of one parameter, which is discussed in most textbooks (see Refs. [34,40]).
The index \(s = 1, \ldots, N_s \). These synthetic data sets are generated randomly using the method described in Section 3.

(c) For each synthetic data set we find the values \(\tan^2 \theta \) and \(\Delta m^2 \) corresponding to the minimum of the least-squares function (1). This procedure gives the distribution of \(\tan^2 \theta \) and \(\Delta m^2 \) for each point on the grid in the space of the neutrino oscillation parameters. Unfortunately this is a rather lengthy task that requires several days of computer time in order to reach an acceptable accuracy, essentially because of the large number of points on a reasonably fine grid, about five thousand in the MSW region (6) and six thousand in the VO region (7).

3. In our procedure, the acceptance zones are 2-dimensional regions in the \(\tan^2 \theta - \Delta m^2 \) space, as illustrated qualitatively in Fig. 6.

For each point on the grid we calculate the corresponding 100\(\beta \)% acceptance zone in the simplest and most natural way: we choose the smallest possible acceptance zone, i.e. that containing the values of \(\tan^2 \theta - \Delta m^2 \) with highest probability, whose sum is equal to \(\beta \). In the case of a linear least-squares fit this method gives the allowed regions obtained with the standard prescription (5). Therefore, our exact allowed regions can be compared directly with the standard ones. Furthermore, in the case of a symmetric distribution, the method of smallest acceptance zones corresponds to the one-dimensional method of central intervals which is known to be uniformly most powerful unbiased for distributions belonging

There is a subtle problem in choosing the method that defines the acceptance zones: the method must be chosen independently of the data and the result. This is what we have done. Otherwise, the property of coverage is lost (see Refs. [41–46]), and one can always choose a method “ad hoc” to obtain any desired result.
ings to the exponential family (see Ref. [40]). A study of the properties of this method will be presented elsewhere [7].

4. We calculate the allowed regions in the $\tan^2 \theta$–Δm^2 plane by taking all the values of the parameters whose acceptance zone includes $(\tan^2 \theta_{\text{obs}}, \Delta m^2_{\text{obs}})$ (the measured value of the estimator, called “estimate”).

Because of the non-linearity of the neutrino oscillation probability as a function of the parameters, the acceptance zones are composed by disconnected sub-zones. This generates two-dimensional allowed regions composed by disconnected allowed sub-regions, some of which lie far from $(\tan^2 \theta_{\text{obs}}, \Delta m^2_{\text{obs}})$.

The last step of the procedure is illustrated qualitatively in Fig. 6, where the cross corresponds to the observed $(\tan^2 \theta_{\text{obs}}, \Delta m^2_{\text{obs}})$, the union of the two vertically hatched regions is the acceptance zone associated with $(\tan^2 \theta_A, \Delta m^2_A)$, and the union of the three horizontally hatched regions is the acceptance zone associated with $(\tan^2 \theta_B, \Delta m^2_B)$. Since the acceptance zone associated with $(\tan^2 \theta_A, \Delta m^2_A)$ includes $(\tan^2 \theta_{\text{obs}}, \Delta m^2_{\text{obs}})$, the point $(\tan^2 \theta_A, \Delta m^2_A)$ is included in the allowed region. On the other hand, since the acceptance zone associated

Fig. 7. Allowed 90%, 95%, 99%, 99.73% confidence level regions in the $\tan^2 \theta$–Δm^2 plane. In each plot the gray area is the allowed region with exact frequentist coverage obtained restricting the possible values of $\tan^2 \theta$ and Δm^2 in the SMA area (11) around the SMA solution, where $(\chi^2_{\text{min}})_{\text{obs}}$ lies. The area enclosed by the solid line is the standard SMA allowed region, shown also in Fig. 1.
with \((\tan^2 \theta, \Delta m^2)\) does not include \((\tan^2 \theta_{\text{obs}}, \Delta m^2_{\text{obs}})\), the point \((\tan^2 \theta, \Delta m^2)\) is excluded from the allowed region.

The results of our calculations are presented in Figs. 7–10, where we have depicted the 90%, 95%, 99% and 99.73% CL regions (gray areas) confronted with those obtained with the standard method based on Eq. (5) (areas enclosed by solid lines), where \((X^2_{\text{min}})_{\text{obs}}\) is the global minimum of the least-squares function (1), which lies in the SMA region. The standard regions coincide with those shown in Figs. 1 and 2.

In Fig. 7 we have restricted the possible values of the neutrino oscillation parameters in the SMA area (11) around the SMA solution, where \((X^2_{\text{min}})_{\text{obs}}\) lies. The acceptance zone for each point on the grid in the parameter space has been calculated generating about \(6 \times 10^5\) synthetic data sets (different for different points on the grid, in order to avoid correlations). One can see that the standard allowed SMA region is an acceptable approximation of the exact\(^7\) allowed region. This is due to the fact that locally the linear approxi-

\(^7\) Here the adjective “exact” refers to the method, that produces allowed regions with exact coverage. Obviously our allowed regions are approximations of the exact ones, that would be obtained with an infinitely dense grid in parameter space and an infinite set of synthetic random data sets.
mation is rather good, as we already found in the previous two sections.

In Fig. 8 we have extended the possible values of the neutrino oscillation parameters to all the MSW area (6). For this figure the number of synthetic data sets for each point on the grid is about 7×10^4 (less than in Fig. 7 because of the larger size of the grid, that slows down the calculation). The standard SMA region is still an acceptable approximation of the exact SMA region, but the exact LMA and LOW regions are larger than the standard ones, so large that they merge together, producing a large allowed region around maximal mixing ($\tan^2 \theta = 1$). This behavior can be understood by comparing Fig. 8 with Fig. 1, which shows that the standard LMA and LOW regions merge at high confidence level (99.95% CL, corresponding to 3.5σ). As we have shown in Section 4, the confidence level of the standard allowed region is smaller than its nominal value. Therefore, it is natural to expect that the exact allowed regions bear some resemblance with the standard regions calculated at higher confidence level.

Figs. 9 and 10 show, respectively, the allowed MSW and VO regions when there is no restriction on the possible values of the neutrino oscillations parameters (the number of synthetic data sets for
each point on the grid is now about 6.5×10^4).\(^8\) Again, one can see that the standard SMA region is an acceptable approximation of the exact SMA region, but the exact LMA, LOW and VO regions are much larger than the standard ones.

From the results of our calculations we conclude that the standard method to calculate allowed regions produces reliable results only locally, i.e. in the calculation of the allowed region surrounding the global minimum of X^2. The other allowed regions are underestimated by the standard method.

6. Conclusions

We have presented the results of a numerical Monte Carlo calculation of the goodness of fit and the confidence level of the standard allowed regions for the neutrino oscillation parameters Δm^2.

\(^8\) For all Figs. 7–10 we have verified that the number of synthetic data sets is sufficient to reach convergence, by comparing the results obtained with different numbers of synthetic data sets.
\[\tan^2 \theta \] obtained from the fit of solar neutrino data. We have shown that the standard values of the goodness of fit and of the confidence level of the allowed regions are significantly overestimated with the standard method. This is mainly due to the non-linear dependence of the neutrino oscillation probability from the parameters. The linear approximation, leading to the standard values of the goodness of fit and of the confidence level of the allowed regions, is valid only locally, for values of the parameters around a specific MSW solution (SMA, LMA, LOW). In the case of the VO solutions the linear approximation is not valid even locally, because of the strong non-linearity of the oscillation probability that causes the existence of several allowed regions close together.

We have also calculated exact allowed regions with correct frequentist coverage using Neyman’s method. The result of these calculations show that the standard allowed region around the global minimum of the least-squares function is a reasonable approximation of the exact one. On the other hand, the size of the other regions is underestimated in the standard method. Indeed, in our calculation the exact SMA region, that contains the minimum of the least-squares function, practically coincides with the standard one. On the other hand, the exact LMA and LOW regions are much larger than the standard ones, so much that they merge in a large allowed region around maximal mixing. Also the exact allowed VO regions are much larger than the standard ones.

The indications on neutrino mixing coming from solar neutrino data are becoming increasingly important for theory and experiment. Furthermore, solar neutrino data will soon be enriched by results of new powerful experiments (SNO [47], BOREXINO [48], GNO [49] and others [50]). As we have shown, the standard statistical analysis of solar neutrino data can lead to imprecise conclusions concerning the goodness of fit, the confidence level of the allowed regions and the size of the allowed regions far from the global minimum of the least-square function. Hence, we believe that it is time to examine critically the method of statistical analysis of solar neutrino data and bring it to the level of quality already attained in other branches of research in high-energy physics.

References

[34] W.T. Eadie, D. Drijard, F.E. James, M. Roos, B. Sadoulet, Statistical Methods in Experimental Physics, North Holland, Amsterdam, 1971.