Investigation of the properties of large volume LaBr₃:Ce scintillators with high energy gamma rays

N. Blasi², F. Camera¹, S. Brambilla², C. Boianno², A. Idini¹, B. Million², R. Nicolini¹, L. Pellegrini¹, O. Wieland², F. C. L. Crespi¹, D. Santonocito², C. Maiolino³, G. Bellia¹,5, A. Rosa³, A. Owens¹ and F. Quarati³

¹Università di Milano and INFN sez. di Milano, Via Celoria 16, 20133 Milano, Italy
²INFN sez. di Milano, Via Celoria 16, 20133 Milano, Italy
³INFN Laboratori Nazionali del Sud, Catania, Italy
4 Advanced Studies and Technology Preparation Division (ACCI-P) ESA/ESTEC Koperhain 1, 2201AZ Noordwijk, the Netherlands
5 Dipartimento di Fisica e Astronomia Università di Catania, via Santa Sofia 64, 95123 Catania, Italy

The properties of cylindrical 3” x 3” and 3.5” x 8” LaBr₃:Ce scintillators (see picture on the left) coupled to different Photons and Hamamatsu Multiplier Tubes (PMTs) were investigated with γ-rays with energy up to 15 MeV. The PMTs used are R5300, XP5301, R6233, R6233-100, XP5700, XP5340 and R10233-100. The tests have been done using the voltage dividers provided with the phototubes and, for the 3.5” x 8” LaBr₃:Ce detector, a specifically designed voltage divider coupled to a R10233-100 PMT. The new Voltage Divider provides both a pre-amplified signal for the energy measurement (from either anode or dynode) and direct anode signal for time measurement. All the detector/PMT configurations have been tested in the energy range 100 keV - 15 MeV in terms of linearity, energy and time resolution for different values of the high voltage.

Table 1: The table shows the properties of the tested PMTs as listed in the general reference sheets and in the final test sheets which is provided with every delivered tube.

As Photonis gives the Cathode Blue Sensitivity while Hamamatsu the Cathode Luminous Sensitivity, the two figures are listed in different columns.

LaBr₃:Ce 3.5” x 8” ≈ 1300 cm³

The plots in the top left panel show the energy spectra as it was measured using a large volume 3.5” x 8” LaBr₃:Ce scintillator detector coupled with a R10233-100 Hamamatsu phototube. The first four panels show the energy spectra measured with sources: 137Ba, 10Cs, 60Co and Am-Be-Ni. The spectrum in the rightmost panel was measured in the reaction 12C(p,p’)12C which produces a 15.1 MeV γ-ray from the direct decay of a 1’ state in 12C to the ground state. The measurement was done at the INFN SUD Laboratory (Catania). The calibration of all the spectra has been done using only the 137Cs and 60Co lines. The spectra with sources has been acquired using a specially developed Voltage Divider powered at 800 V. The 15.1 MeV γ-rays spectrum was measured using the standard E1198-27 VD and a voltage of 500 V.

In the top plots the energy and time measurement using a 3.5”x8” LaBr₃:Ce detector. The resolution values have been measured for different phototubes and for different voltages. The 5" PMT gives the best energy performances. Time resolution is strongly affected by the applied voltage.

LaBr₃:Ce 3” x 3” - 350 cm³

The plots in the top left panel show the energy spectra as it was measured using a large volume 3” x 3” LaBr₃:Ce scintillator detector coupled with a XP5300 Photonis Phototube and a Voltage Divider VD202K/01 powered at 500 Volts. The first three panels of the plot show the energy spectra measured with sources: 4,4 MeV peak, 15.1 MeV peak and 8.98 MeV peak. The plot on the leftmost panel displays the amplitude (in millivolt) of the 661.6 MeV line measured at 150000 Counts. The plot in the central panel shows the trend of the energy resolution (FWHM) measured between 300 keV and 15.1 MeV using R10233-100 PMT with E1198-27 VD (blue points) and the new developed VD (red points). The FWHM of the 15.1 MeV line is a little larger than expected but the data are still preliminary and the correction due to detector counting rate and PMT temperature have to be inserted. The plot on the right displays the measured linearity from 661.7 keV up to 0.89 MeV measured for the R10233 + E1198-27 Voltage Divider for different values of the applied voltages. As expected PMT non linearity degrades as the voltage increases, a detailed study of linearity with the new developed VD is in progress.

The plots in the top right panel show the energy spectra as was measured using a large volume 3” x 3” powered at 500 Volts. The LaBr₃:Ce scintillator detector was coupled with a XP5300 Photonis Phototube and a Voltage Divider VD202K/01. As expected in a log-log scale the data show a linear trend, ii) The PMT energy linearity plots. Two different PMTs, Photonis model XP5301 and Hamamatsu model R6233-100 have been used. As expected the linearity degrades increasing the high voltage of the PMT. The Hamamatsu PMT shows a much larger non linearity as compared to the Photonis one (the two plots have the same Y scale).

The plots shown in this poster describe the response in terms of energy resolution, energy resolution and PMT linearity of large volume LaBr₃:Ce crystals. Detector performances have been tested changing the PMT, Voltage Divider, the applied voltage and with gamma radiation ranging from 300 keV up to 15.1 MeV. The Hamamatsu PMTs with SBA photocathode in general provide better energy resolution but a much worse linearity. Time resolution, which is critical for gamma spectroscopy applications, depends on the applied voltage. Using standard passive voltage dividers, there is a tradeoff between time resolution and linearity. An especially developed Voltage Divider capable to extract a preamplified signal from the anode/diode and a time signal from the anode is under tests. The results of the tests shows that these detectors can be successfully used in arrays for gamma spectroscopy.