Coulomb Energy Density Functionals for Nuclear Systems

内藤 智也 (Tomoya Naito)

Department of Physics, Graduate School of Science, the University of Tokyo, JAPAN
RIKEN Nishina Center, JAPAN

February 27, 2018

One-day workshop on “New Vistas on Nuclear Dynamics: Shapes, Spin, and Isospin”
Università degli Studi di Milano / Istituto Nazionale di Fisica Nucleare, Sezione di Milano
I Don’t Know!! (^o^)
I Don’t Know!! (^o^)

It’s Joke...
Who Am I?

- 2nd year of the master course student in Dept. Phys., U. Tokyo (Condensed Matter Theory)
- Student trainee in RIKEN Nishina Center (Nuclear Theory)

Research Topics

- Basic ideas of density functional theory
- Coulomb energy density functional in nuclear physics to understand isospin symmetry breaking of nuclear force
- Relativistic density functional theory in electronic systems to understand atomic properties of super-heavy elements
My “General” Research Motivations

I Want to Understand

- Fundamental symmetries (CPT symmetries) in many-body problem
- Relativistic effects in many-body problems
- Similarity and difference between nuclear physics, atomic physics, and condensed matter physics
 difference between these systems: mainly the interaction

My Motivation: Calculate Well-understood Things with High-accuracy

Electro-magnetic interaction/QED: well-understood
→ should be calculate with high-accuracy
 in order to find “unknown” physics and estimate uncertainly
 (e.g. estimation of isospin breaking of nuclear force)

At first, due to the wider applicability
I have used the DFT for nuclear systems and electron systems
Coulomb Energy Density Functionals in Nuclear Systems

Treatment of the Coulomb int. exactly in nuclear DFT

Relativistic Effects in Electronic Density Functional Theory

Treatment of the relativistic effects to calculate electronic structure of super-heavy elements (atoms, molecules, solids)

On-going Collaboration (selected)

- Inverse Kohn-Sham method (with D. Ohashi and H. Liang)
- FRG-DFT in electron systems (with T. Yokota)
- Many-body calculation toward measurement of EDM (with M. Kitaguchi and H. Nagahama)
Coulomb Energy Density Functionals in Nuclear Systems

Treatment of the Coulomb int. exactly in nuclear DFT

Relativistic Effects in Electronic Density Functional Theory

Treatment of the relativistic effects to calculate electronic structure of super-heavy elements (atoms, molecules, solids)

On-going Collaboration (selected)

• Inverse Kohn-Sham method (with D. Ohashi and H. Liang)
• FRG-DFT in electron systems (with T. Yokota)
• Many-body calculation toward measurement of EDM (with M. Kitaguchi and H. Nagahama)
1	Introduction
2	Coulomb Correlation Functional
3	Coulomb Exchange Functional
4	Conclusion and Perspectives
Table of Contents

1 Introduction
2 Coulomb Correlation Functional
3 Coulomb Exchange Functional
4 Conclusion and Perspectives
• Nuclear force for $T = 1$ has little T_3 dependence i.e., that for $p-p$, $n-n$, and $n-p$ ($T = 1$) are almost the same

Nuclear force has almost isospin symmetry

• If nuclear force has fully isospin symmetry, charge-symmetry-breaking (CSB) force and charge-independence-breaking (CIB) force

$$V_{CSB} = V_{nn} - V_{pp}, \quad V_{CIB} = V_{np} - \frac{V_{nn} + V_{pp}}{2}$$

are identical to 0, whereas
• Nuclear force for $T = 1$ has little T_3 dependence i.e., that for $p-p$, $n-n$, and $n-p$ ($T = 1$) are almost the same
Nuclear force has almost isospin symmetry

• If nuclear force has fully isospin symmetry, charge-symmetry-breaking (CSB) force and charge-independence-breaking (CIB) force

\[V_{CSB} = V_{nn} - V_{pp}, \quad V_{CIB} = V_{np} - \frac{V_{nn} + V_{pp}}{2} \]

are identical to 0, whereas $V_{CSB} \neq 0$ and $V_{CIB} \neq 0$ are known
• Nuclear force for $T = 1$ has little T_3 dependence i.e., that for $p-p$, $n-n$, and $n-p$ ($T = 1$) are almost the same
Nuclear force has almost isospin symmetry

• If nuclear force has fully isospin symmetry, charge-symmetry-breaking (CSB) force and charge-independence-breaking (CIB) force

\[V_{CSB} = V_{nn} - V_{pp}, \quad V_{CIB} = V_{np} - \frac{V_{nn} + V_{pp}}{2} \]

are identical to 0, whereas $V_{CSB} \neq 0$ and $V_{CIB} \neq 0$ are known

• Amount of isospin symmetry breaking (ISB) of nuclear force is related to flavor symmetry breaking for quarks (CKM matrix V_{ud})
• Nuclear force for $T = 1$ has little T_3 dependence i.e., that for $p-p$, $n-n$, and $n-p$ ($T = 1$) are almost the same
Nuclear force has almost isospin symmetry

• If nuclear force has fully isospin symmetry, charge-symmetry-breaking (CSB) force and charge-independence-breaking (CIB) force

$$V_{\text{CSB}} = V_{nn} - V_{pp}, \quad V_{\text{CIB}} = V_{np} - \frac{V_{nn} + V_{pp}}{2}$$

are identical to 0, whereas $V_{\text{CSB}} \neq 0$ and $V_{\text{CIB}} \neq 0$ are known

• Amount of isospin symmetry breaking (ISB) of nuclear force is related to flavor symmetry breaking for quarks (CKM matrix V_{ud})

• However, electromagnetic (EM) force also breaks isospin symmetry
Isospin Symmetry Breaking of Nuclear Force

- Nuclear force for \(T = 1 \) has little \(T_3 \) dependence i.e., that for \(p-p, n-n, \) and \(n-p \) \((T = 1) \) are almost the same

- Nuclear force has almost isospin symmetry

- If nuclear force has fully isospin symmetry, charge-symmetry-breaking (CSB) force and charge-independence-breaking (CIB) force

\[
V_{\text{CSB}} = V_{nn} - V_{pp}, \quad V_{\text{CIB}} = V_{np} - \frac{V_{nn} + V_{pp}}{2}
\]

are identical to 0, whereas \(V_{\text{CSB}} \neq 0 \) and \(V_{\text{CIB}} \neq 0 \) are known

- Amount of isospin symmetry breaking (ISB) of nuclear force is related to flavor symmetry breaking for quarks (CKM matrix \(V_{ud} \))

- However, electromagnetic (EM) force also breaks isospin symmetry

- EM force and ISB of nuclear force are entangled to each other, for example, in mirror nuclei and in isobaric analog states
Mirror Nuclei Mass Difference

Isospin Symmetry Breaking of Nuclear Force No
Electromagnetic Force Off

Atomic Number: \(Z \)
Neutron Number: \(N \)

Atomic Number: \(N \)
Neutron Number: \(Z \)
Mirror Nuclei Mass Difference

Isospin Symmetry Breaking of Nuclear Force: Yes
Electromagnetic Force: Off

Atoms:
- Atomic Number: Z
- Neutron Number: N

- Atomic Number: N
- Neutron Number: Z
Mirror Nuclei Mass Difference

Isospin Symmetry Breaking of Nuclear Force: Yes
Electromagnetic Force: On

Atomic Number: Z
Neutron Number: N

Atomic Number: N
Neutron Number: Z
Motivations

Importance of Electromagnetic Force
In order to understand isospin symmetry breaking of nuclear force, high-accuracy evaluation of electromagnetic force is required

Electromagnetic Force in Condensed Matter Physics
Most phenomena are caused by the Coulomb force
High-accuracy calculations have been developed for decades

- In Density Functional Theory (DFT), Correlation is considered
- Correlation is not considered in nuclear DFT
- Density gradient effect is considered as GGA
- Surface effect is important for nuclei

Our Work
Motivations

Importance of Electromagnetic Force

In order to understand isospin symmetry breaking of nuclear force, high-accuracy evaluation of electromagnetic force is required.

Electromagnetic Force in Condensed Matter Physics

Most phenomena are caused by the Coulomb force. High-accuracy calculations have been developed for decades:

- In Density Functional Theory (DFT), Correlation is considered.
- Correlation is not considered in nuclear DFT.
- Density gradient effect is considered as GGA.
- Surface effect is important for nuclei.

Our Work

Coulomb correlation and Density gradient effect (GGA) in Coulomb term are considered in nuclear DFT.
Energy Density Functional for Electron Systems

\[
E_{\text{gs}} = T_0 [\rho_{\text{gs}}] + \int V_{\text{ext}} (r) \rho_{\text{gs}} (r) \, dr + E_d [\rho_{\text{gs}}] + E_x [\rho_{\text{gs}}] + E_c [\rho_{\text{gs}}]
\]

\[
= \sum_j \varepsilon_j - \int V_{\text{xc}} (r) \rho_{\text{gs}} (r) \, dr - E_d [\rho_{\text{gs}}] + E_x [\rho_{\text{gs}}] + E_c [\rho_{\text{gs}}]
\]

\(T_0\): kinetic energy of non-interacting system, \(\varepsilon_j\): single-particle energy of KS-system,
\(E_d\): direct (Hartree) functional, \(E_x\): exchange functional, \(E_c\): correlation functional

- \(E_d\) is exactly known
- Once \(E_x\) and \(E_c\) are known, the exact \(E_{\text{gs}}\) can be calculated
- Unfortunately, exact forms of \(E_x\) and \(E_c\) are unknown
- Approximation of \(E_x\) and \(E_c\) are required
Local Density Approximation (LDA)

- E_x and E_c are approximated to those of homogeneous systems → LDA gives the exact energy for homogeneous systems
- E_x in LDA is known as Hartree-Fock-Slater approximation
- Energy density ε depends only on $\rho (r)$

$$E_i [\rho] = \int \varepsilon_i (\rho (r)) \rho (r) \, dr \quad (i = x, c)$$

Generalized Gradient Approximation (GGA)

- Energy density ε depends on $|\nabla \rho (r)|$ as well as $\rho (r)$

$$E_i [\rho] = \int \varepsilon_i (\rho (r), |\nabla \rho (r)|) \rho (r) \, dr \quad (i = x, c)$$
Energy Density Functional for Electron Systems

\[E_{gs} = T_0 [\rho_{gs}] + \int V_{\text{ext}}(r) \rho_{gs}(r) \, dr + E_d [\rho_{gs}] + E_x [\rho_{gs}] + E_c [\rho_{gs}] \]

Energy Density Functional in Nuclear Physics

\[E_{gs} = T_0 [\rho_p, \rho_n] + E_{\text{nucl}} [\rho_p, \rho_n] + E_{Cd} [\rho_{ch}] + E_{Cx} [\rho_{ch}] \]

- \(T_0 \): kinetic energy of non-interacting system, \(E_{\text{nucl}} \): nuclear part functional, \(E_{Cd} \): direct Coulomb functional, \(E_{Cx} \): exchange Coulomb functional, \(V_{\text{ext}} \equiv 0 \) since nuclear systems are self-bound systems.

- Coulomb correlation functional \(E_{Cc} \) is not included explicitly.
- Since exact effective nuclear force is still under discussion, so far \(E_{\text{nucl}} \) is given by fitting to experimental data.
- Usually, protons are assumed to be point particles \((\rho_{ch} = \rho_p) \).
Energy Density Functional for Electron Systems

\[E_{gs} = T_0 \langle \rho_{gs} \rangle + \int V_{\text{ext}}(\mathbf{r}) \rho_{gs}(\mathbf{r}) \, d\mathbf{r} + E_d[\rho_{gs}] + E_x[\rho_{gs}] + E_c[\rho_{gs}] \]

Energy Density Functional in Nuclear Physics

\[E_{gs} = T_0 [\rho_p, \rho_n] + E_{\text{nucl}}[\rho_p, \rho_n] + E_{Cd}[\rho_{ch}] + E_{Cx}[\rho_{ch}] \]

\(T_0 \): kinetic energy of non-interacting system, \(E_{\text{nucl}} \): nuclear part functional,
\(E_{Cd} \): direct Coulomb functional, \(E_{Cx} \): exchange Coulomb functional,

\(V_{\text{ext}} \equiv 0 \) since nuclear systems are self-bound systems

- Coulomb correlation functional \(E_{Cc} \) is not included explicitly
- Since exact effective nuclear force is still under discussion, so far \(E_{\text{nucl}} \) is given by fitting to experimental data
 \(\rightarrow \) Coulomb correlation is included implicitly
- Usually, protons are assumed to be point particles \((\rho_{ch} = \rho_p) \)
Energy Density Functional for Electron Systems

\[E_{gs} = T_0 [\rho_{gs}] + \int V_{\text{ext}}(r) \rho_{gs}(r) \, dr + E_d[\rho_{gs}] + E_x[\rho_{gs}] + E_c[\rho_{gs}] \]

Energy Density Functional in Nuclear Physics

\[E_{gs} = T_0 [\rho_p, \rho_n] + E_{\text{nucl}} [\rho_p, \rho_n] + E_{\text{Cd}} [\rho_{ch}] + E_{\text{Cx}} [\rho_{ch}] \]

- \(T_0 \): kinetic energy of non-interacting system,
- \(E_{\text{nucl}} \): nuclear part functional,
- \(E_{\text{Cd}} \): direct Coulomb functional,
- \(E_{\text{Cx}} \): exchange Coulomb functional,

\[V_{\text{ext}} \equiv 0 \] since nuclear systems are self-bound systems

- Under \(\rho_{ch} = \rho_p \) ansatz, the “exact-Fock” term should be used for \(E_{\text{Cx}} \)

\[E_{\text{Cx}} = \frac{1}{2} \sum_{j, k \in \text{Proton}} \iint \frac{\psi_j^*(r) \psi_k^*(r') \psi_j(r') \psi_k(r)}{|r - r'|} \, dr \, dr' \]
Energy Density Functional for Electron Systems

\[E_{gs} = T_0 \rho_{gs} + \int V_{ext}(r) \rho_{gs}(r) \, dr + E_d \rho_{gs} + E_x \rho_{gs} + E_c \rho_{gs} \]

Energy Density Functional in Nuclear Physics

\[E_{gs} = T_0 [\rho_p, \rho_n] + E_{\text{nucl}} [\rho_p, \rho_n] + E_{\text{Cd}} [\rho_{ch}] + E_{\text{Cx}} [\rho_{ch}] \]

- \(T_0 \): kinetic energy of non-interacting system,
- \(E_{\text{nucl}} \): nuclear part functional,
- \(E_{\text{Cd}} \): direct Coulomb functional,
- \(E_{\text{Cx}} \): exchange Coulomb functional,
- \(V_{\text{ext}} \equiv 0 \) since nuclear systems are self-bound systems

- Under \(\rho_{ch} = \rho_p \) ansatz, the “exact-Fock” term should be used for \(E_{\text{Cx}} \)

\[E_{\text{Cx}} = \frac{1}{2} \sum_{j, k \in \text{Proton}} \int \int \frac{\psi_j^*(r) \psi_k^*(r') \psi_j(r') \psi_k(r)}{|r - r'|} \, dr \, dr' \]

- Due to numerical cost, LDA \(E_{\text{Cx}} \) (Hartree-Fock-Slater approx.) is used or sometimes \(E_{\text{Cx}} \) is neglected
Density Gradient Effect in Atomic Nuclei

Evaluation of 208Pb by Using Experimental ρ_{ch}

\[E_{\text{C}x} [\rho_{\text{ch}}] = \int \varepsilon_x (r) \rho_{\text{ch}} (r) \, dr \]

Density gradient effect is visible in surface region
Table of Contents

1 Introduction
2 Coulomb Correlation Functional
3 Coulomb Exchange Functional
4 Conclusion and Perspectives

Previous Work

Coulomb correlation energy is calculated for some specific nuclei by using the response function

<table>
<thead>
<tr>
<th>Nuclei</th>
<th>E_{C_x} (MeV)</th>
<th>E_{C_c} (MeV)</th>
<th>$E_{\text{C}\text{c}}/E{\text{C}_\text{x}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{16}O</td>
<td>−2.99</td>
<td>0.99</td>
<td>−33.1 %</td>
</tr>
<tr>
<td>^{40}Ca</td>
<td>−7.92</td>
<td>3.18</td>
<td>−40.2 %</td>
</tr>
<tr>
<td>^{208}Pb</td>
<td>−31.29</td>
<td>6.88</td>
<td>−22.0 %</td>
</tr>
</tbody>
</table>

Our Work

In order to consider Coulomb correlation energy E_{C_c} in self-consistent step, E_{C_c} as a functional form is required
Coulomb Correlation Functional

Previous Work

Coulomb correlation energy is calculated for some specific nuclei by using the response function.

<table>
<thead>
<tr>
<th>Nuclei</th>
<th>E_{Cx} (MeV)</th>
<th>E_{Cc} (MeV)</th>
<th>E_{Cc}/E_{Cx}</th>
</tr>
</thead>
<tbody>
<tr>
<td>16O</td>
<td>−2.99</td>
<td>0.99</td>
<td>−33.1%</td>
</tr>
<tr>
<td>40Ca</td>
<td>−7.92</td>
<td>3.18</td>
<td>−40.2%</td>
</tr>
<tr>
<td>208Pb</td>
<td>−31.29</td>
<td>6.88</td>
<td>−22.0%</td>
</tr>
</tbody>
</table>

Our Work

In order to consider Coulomb correlation energy E_{Cc} in self-consistent step, E_{Cc} as a functional form is required.

→ E_{Cc} is calculated as a test by functionals used in electron systems.
\[\xi = \frac{\alpha mc}{\hbar} \left(\frac{3}{4\pi\rho} \right)^{1/3} \]

Evaluated from Analytical Formulae in LDA

Nuclei

Electron Systems

\[\rho_0 \quad 0.001\rho_0 \]
Energy (MeV)

<table>
<thead>
<tr>
<th>Nuclei</th>
<th>LDA E_{Cx}</th>
<th>LDA E_{Cc}</th>
<th>$E_{Cc}^{LDA} / E_{Cx}^{LDA}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4He</td>
<td>-0.6494</td>
<td>-0.01296</td>
<td>1.996%</td>
</tr>
<tr>
<td>12C</td>
<td>-1.962</td>
<td>-0.03904</td>
<td>1.990%</td>
</tr>
<tr>
<td>16O</td>
<td>-2.638</td>
<td>-0.05218</td>
<td>1.978%</td>
</tr>
<tr>
<td>40Ca</td>
<td>-7.087</td>
<td>-0.1329</td>
<td>1.875%</td>
</tr>
<tr>
<td>48Ca</td>
<td>-7.113</td>
<td>-0.1332</td>
<td>1.873%</td>
</tr>
<tr>
<td>58Ni</td>
<td>-10.28</td>
<td>-0.1879</td>
<td>1.828%</td>
</tr>
<tr>
<td>116Sn</td>
<td>-18.41</td>
<td>-0.3361</td>
<td>1.826%</td>
</tr>
<tr>
<td>124Sn</td>
<td>-18.24</td>
<td>-0.3356</td>
<td>1.840%</td>
</tr>
<tr>
<td>206Pb</td>
<td>-30.38</td>
<td>-0.5527</td>
<td>1.820%</td>
</tr>
<tr>
<td>208Pb</td>
<td>-30.31</td>
<td>-0.5524</td>
<td>1.823%</td>
</tr>
</tbody>
</table>
Energy (MeV)

<table>
<thead>
<tr>
<th>Nuclei</th>
<th>LDA E_{Cx}</th>
<th>LDA E_{Cc}</th>
<th>$E_{Cc}^{LDA}/E_{Cx}^{LDA}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4He</td>
<td>-0.6494</td>
<td>-0.01296</td>
<td>$1.996%$</td>
</tr>
<tr>
<td>12C</td>
<td>-1.962</td>
<td>-0.03904</td>
<td>$1.990%$</td>
</tr>
<tr>
<td>16O</td>
<td>-2.638</td>
<td>-0.05218</td>
<td>$1.978%$</td>
</tr>
<tr>
<td>40Ca</td>
<td>-7.087</td>
<td>-0.1329</td>
<td>$1.875%$</td>
</tr>
<tr>
<td>48Ca</td>
<td>-7.113</td>
<td>-0.1332</td>
<td>$1.873%$</td>
</tr>
<tr>
<td>58Ni</td>
<td>-10.28</td>
<td>-0.1879</td>
<td>$1.828%$</td>
</tr>
<tr>
<td>116Sn</td>
<td>-18.41</td>
<td>-0.3361</td>
<td>$1.826%$</td>
</tr>
<tr>
<td>124Sn</td>
<td>-18.24</td>
<td>-0.3356</td>
<td>$1.840%$</td>
</tr>
<tr>
<td>206Pb</td>
<td>-30.38</td>
<td>-0.5527</td>
<td>$1.820%$</td>
</tr>
<tr>
<td>208Pb</td>
<td>-30.31</td>
<td>-0.5524</td>
<td>$1.823%$</td>
</tr>
<tr>
<td>Nuclei</td>
<td>LDA E_{Cx}</td>
<td>LDA E_{Cc}</td>
<td>$E^{LDA}{Cc}/E^{LDA}{Cx}$</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>--------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>4He</td>
<td>−0.6494</td>
<td>−0.01296</td>
<td>1.996 %</td>
</tr>
<tr>
<td>12C</td>
<td>−1.962</td>
<td>−0.03904</td>
<td>1.990 %</td>
</tr>
<tr>
<td>16O</td>
<td>−2.638</td>
<td>−0.05218</td>
<td>1.978 %</td>
</tr>
<tr>
<td>40Ca</td>
<td>−7.087</td>
<td>−0.1329</td>
<td>1.875 %</td>
</tr>
<tr>
<td>48Ca</td>
<td>−7.113</td>
<td>−0.1332</td>
<td>1.873 %</td>
</tr>
<tr>
<td>58Ni</td>
<td>−10.28</td>
<td>−0.1879</td>
<td>1.828 %</td>
</tr>
<tr>
<td>116Sn</td>
<td>−18.41</td>
<td>−0.3361</td>
<td>1.826 %</td>
</tr>
<tr>
<td>124Sn</td>
<td>−18.24</td>
<td>−0.3356</td>
<td>1.840 %</td>
</tr>
<tr>
<td>206Pb</td>
<td>−30.38</td>
<td>−0.5527</td>
<td>1.820 %</td>
</tr>
<tr>
<td>208Pb</td>
<td>−30.31</td>
<td>−0.5524</td>
<td>1.823 %</td>
</tr>
</tbody>
</table>
Evaluation by Experimental ρ_{ch}

Hartree-Fock-Slater Approx. Consistent with $\varepsilon_{\text{Cc}}/\varepsilon_{\text{Cx}}$

Energy (MeV)

<table>
<thead>
<tr>
<th>Nuclei</th>
<th>LDA E_{Cx}</th>
<th>LDA E_{Cc}</th>
<th>$E^{\text{LDA}}{\text{Cc}}/E^{\text{LDA}}{\text{Cx}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>^4He</td>
<td>-0.6494</td>
<td>-0.01296</td>
<td>1.996 %</td>
</tr>
<tr>
<td>^{12}C</td>
<td>-1.962</td>
<td>-0.03904</td>
<td>1.990 %</td>
</tr>
<tr>
<td>^{16}O</td>
<td>-2.638</td>
<td>-0.05218</td>
<td>1.978 %</td>
</tr>
<tr>
<td>^{40}Ca</td>
<td>-7.087</td>
<td>-0.1329</td>
<td>1.875 %</td>
</tr>
<tr>
<td>^{48}Ca</td>
<td>-7.113</td>
<td>-0.1332</td>
<td>1.873 %</td>
</tr>
<tr>
<td>^{58}Ni</td>
<td>-10.28</td>
<td>-0.1879</td>
<td>1.828 %</td>
</tr>
<tr>
<td>^{116}Sn</td>
<td>-18.41</td>
<td>-0.3361</td>
<td>1.826 %</td>
</tr>
<tr>
<td>^{124}Sn</td>
<td>-18.24</td>
<td>-0.3356</td>
<td>1.840 %</td>
</tr>
<tr>
<td>^{206}Pb</td>
<td>-30.38</td>
<td>-0.5527</td>
<td>1.820 %</td>
</tr>
<tr>
<td>^{208}Pb</td>
<td>-30.31</td>
<td>-0.5524</td>
<td>1.823 %</td>
</tr>
</tbody>
</table>

Non-negligible!
Short Conclusion

- Coulomb correlation energy is considered as a functional in our work.
- Nuclear force is strong attractive, Coulomb force is weak repulsive → nuclear force causes main part of Coulomb correlation.

Our Work does not include effects from the nuclear force:

\[E_{Cc} \text{ is around } 2\% \text{ of } E_{Cx} \]

Previous Work included effects from the nuclear force:

\[E_{Cc} \text{ is around } -20\% \text{ of } E_{Cx} \]
Short Conclusion

- Coulomb correlation energy is considered as a functional in our work
- Nuclear force is strong attractive, Coulomb force is weak repulsive → nuclear force causes main part of Coulomb correlation

Our Work does not include effects from the nuclear force

\[E_{Cc} \text{ is around } 2\% \text{ of } E_{Cx} \]

Previous Work included effects from the nuclear force

\[E_{Cc} \text{ is around } -20\% \text{ of } E_{Cx} \]

- This difference shows that the nuclear force should be considered in the Coulomb correlation functional
- Thus, \(E_{Cc} \) in this work is not applicable for nuclear systems directly
- The way to derive \(E_{Cc} \) in nuclear systems should be considered again
Table of Contents

1. **Introduction**
2. **Coulomb Correlation Functional**
3. **Coulomb Exchange Functional**
4. **Conclusion and Perspectives**

Energy (MeV)

<table>
<thead>
<tr>
<th>Nuclei</th>
<th>LDA E_{Cx}</th>
<th>GGA E_{Cx}</th>
<th>$E_{Cx}^{GGA} - E_{Cx}^{LDA}$</th>
<th>$E_{Cx}^{GGA} / E_{Cx}^{LDA}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4He</td>
<td>-0.6494</td>
<td>-0.7281</td>
<td>-0.0787</td>
<td>112.1 %</td>
</tr>
<tr>
<td>12C</td>
<td>-1.962</td>
<td>-2.105</td>
<td>-0.143</td>
<td>107.3 %</td>
</tr>
<tr>
<td>16O</td>
<td>-2.638</td>
<td>-2.806</td>
<td>-0.168</td>
<td>106.4 %</td>
</tr>
<tr>
<td>40Ca</td>
<td>-7.087</td>
<td>-7.381</td>
<td>-0.294</td>
<td>104.1 %</td>
</tr>
<tr>
<td>48Ca</td>
<td>-7.113</td>
<td>-7.409</td>
<td>-0.296</td>
<td>104.2 %</td>
</tr>
<tr>
<td>58Ni</td>
<td>-10.28</td>
<td>-10.65</td>
<td>-0.37</td>
<td>103.6 %</td>
</tr>
<tr>
<td>116Sn</td>
<td>-18.41</td>
<td>-18.92</td>
<td>-0.51</td>
<td>102.8 %</td>
</tr>
<tr>
<td>124Sn</td>
<td>-18.24</td>
<td>-18.75</td>
<td>-0.51</td>
<td>102.8 %</td>
</tr>
<tr>
<td>206Pb</td>
<td>-30.38</td>
<td>-31.06</td>
<td>-0.68</td>
<td>102.2 %</td>
</tr>
<tr>
<td>208Pb</td>
<td>-30.31</td>
<td>-30.99</td>
<td>-0.68</td>
<td>102.2 %</td>
</tr>
</tbody>
</table>

Energy (MeV)

<table>
<thead>
<tr>
<th>Nuclei</th>
<th>LDA E_{Cx}</th>
<th>GGA E_{Cx}</th>
<th>$E_{GGA}^{\text{GGA}} - E_{LDA}^{\text{LDA}}$</th>
<th>$E_{GGA}^{\text{GGA}} / E_{LDA}^{\text{LDA}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4He</td>
<td>-0.6494</td>
<td>-0.7281</td>
<td>-0.0787</td>
<td>$112.1%$</td>
</tr>
<tr>
<td>12C</td>
<td>-1.962</td>
<td>-2.105</td>
<td>-0.143</td>
<td>$107.3%$</td>
</tr>
<tr>
<td>16O</td>
<td>-2.638</td>
<td>-2.806</td>
<td>-0.168</td>
<td>$106.4%$</td>
</tr>
<tr>
<td>40Ca</td>
<td>-7.087</td>
<td>-7.381</td>
<td>-0.294</td>
<td>$104.1%$</td>
</tr>
<tr>
<td>48Ca</td>
<td>-7.113</td>
<td>-7.409</td>
<td>-0.296</td>
<td>$104.2%$</td>
</tr>
<tr>
<td>58Ni</td>
<td>-10.28</td>
<td>-10.65</td>
<td>-0.37</td>
<td>$103.6%$</td>
</tr>
<tr>
<td>116Sn</td>
<td>-18.41</td>
<td>-18.92</td>
<td>-0.51</td>
<td>$102.8%$</td>
</tr>
<tr>
<td>124Sn</td>
<td>-18.24</td>
<td>-18.75</td>
<td>-0.51</td>
<td>$102.8%$</td>
</tr>
<tr>
<td>206Pb</td>
<td>-30.38</td>
<td>-31.06</td>
<td>-0.68</td>
<td>$102.2%$</td>
</tr>
<tr>
<td>208Pb</td>
<td>-30.31</td>
<td>-30.99</td>
<td>-0.68</td>
<td>$102.2%$</td>
</tr>
</tbody>
</table>

Evaluation by Experimental ρ_{ch}

Hartree-Fock-Slater Approx.

| Energy (MeV) | \begin{tabular}{c|c|c|c|c|c}
\hline
Nuclei & \multicolumn{2}{c|}{LDA E_{C_x}} & \multicolumn{2}{c|}{GGA E_{C_x}} & \multicolumn{1}{c|}{$E_{\text{GGA}}^{C_x} - E_{\text{LDA}}^{C_x}$} & \multicolumn{1}{c|}{$E_{\text{GGA}}^{C_x}/E_{\text{LDA}}^{C_x}$} \\
\hline
^4He & -0.6494 & -0.7281 & -0.0787 & 112.1% \\
^{12}C & -1.962 & -2.105 & -0.143 & 107.3% \\
^{16}O & -2.638 & -2.806 & -0.168 & 106.4% \\
^{40}Ca & -7.087 & -7.381 & -0.294 & 104.1% \\
^{48}Ca & -7.113 & -7.409 & -0.296 & 104.2% \\
^{58}Ni & -10.28 & -10.65 & -0.37 & 103.6% \\
^{116}Sn & -18.41 & -18.92 & -0.51 & 102.8% \\
^{124}Sn & -18.24 & -18.75 & -0.51 & 102.8% \\
^{206}Pb & -30.38 & -31.06 & -0.68 & 102.2% \\
^{208}Pb & -30.31 & -30.99 & -0.68 & 102.2% \\
\hline
\end{tabular} |}

Evaluation by Experimental ρ_{ch}

<table>
<thead>
<tr>
<th>Nuclei</th>
<th>LDA E_{Cx}</th>
<th>GGA E_{Cx}</th>
<th>$E_{GGA}^{Cx} - E_{LDA}^{Cx}$</th>
<th>$E_{GGA}^{Cx}/E_{LDA}^{Cx}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>^4He</td>
<td>-0.6494</td>
<td>-0.7281</td>
<td>-0.0787</td>
<td>$112.1%$</td>
</tr>
<tr>
<td>^{12}C</td>
<td>-1.962</td>
<td>-2.105</td>
<td>-0.143</td>
<td>$107.3%$</td>
</tr>
<tr>
<td>^{16}O</td>
<td>-2.638</td>
<td>-2.806</td>
<td>-0.168</td>
<td>$106.4%$</td>
</tr>
<tr>
<td>^{40}Ca</td>
<td>-7.087</td>
<td>-7.381</td>
<td>-0.294</td>
<td>$104.1%$</td>
</tr>
<tr>
<td>^{48}Ca</td>
<td>-7.113</td>
<td>-7.409</td>
<td>-0.296</td>
<td>$104.2%$</td>
</tr>
<tr>
<td>^{58}Ni</td>
<td>-10.28</td>
<td>-10.65</td>
<td>-0.37</td>
<td>$103.6%$</td>
</tr>
<tr>
<td>^{116}Sn</td>
<td>-18.41</td>
<td>-18.92</td>
<td>-0.51</td>
<td>$102.8%$</td>
</tr>
<tr>
<td>^{124}Sn</td>
<td>-18.24</td>
<td>-18.75</td>
<td>-0.51</td>
<td>$102.8%$</td>
</tr>
<tr>
<td>^{206}Pb</td>
<td>-30.38</td>
<td>-31.06</td>
<td>-0.68</td>
<td>$102.2%$</td>
</tr>
<tr>
<td>^{208}Pb</td>
<td>-30.31</td>
<td>-30.99</td>
<td>-0.68</td>
<td>$102.2%$</td>
</tr>
</tbody>
</table>

Difference (600 keV): Non-negligible!

Hartree-Fock-Slater Approx.

12% enhanced!!
Comparison to Exact Hartree-Fock Calculation

\[\Delta E_{C_x} = \frac{E_{GGA}^{C_x} - E_{LDA}^{C_x}}{E_{GGA}^{C_x}} \]

\[\Delta E_{C_x} = \frac{E_{\text{exactHF}}^{C_x} - E_{LDA}^{C_x}}{E_{\text{exactHF}}^{C_x}} \]

Short Conclusion

- GGA exchange functionals may work in nuclear system, where choice of functionals is not critical.
- GGA exchange enhanced from LDA:
 - 12% ($-80\,\text{keV}$) in ^4He,
 - 2.3% ($-600\,\text{keV}$) in ^{208}Pb.
- However, there are still some error:
 - → let us discuss modification for GGA functional.
PBE-GGA Coulomb Exchange Functional

\[E_{C_X}^{\text{GGA}} [\rho] = \int \varepsilon_{C_X}^{\text{LDA}} (\rho (r)) \, F (s) \, \rho (r) \, dr, \quad s = \frac{|\nabla \rho|}{2 \left(3\pi^2\right)^{1/3} \rho^{4/3}}, \]

\[F (s) = 1 + \kappa - \frac{\kappa}{1 + \mu s^2 / \kappa}, \quad \mu = 0.21951, \quad \kappa = 0.804 \]

- \(\kappa \) is determined from Lieb-Oxford bound (analytical evaluation)
- \(\mu \) is determined from RPA calculation of homogeneous electron gas
Self-Consistent Calculation

PBE-GGA Coulomb Exchange Functional

\[
E_{\text{Cgx}}^{\text{GGA}} [\rho] = \int \varepsilon_{\text{Cgx}}^{\text{LDA}} (\rho (\mathbf{r})) \ F (s) \ \rho (\mathbf{r}) \ d\mathbf{r}, \quad s = \frac{\left| \nabla \rho \right|}{2 \left(3 \pi^2 \right)^{1/3} \rho^{4/3}},
\]

\[
F (s) = 1 + \kappa - \frac{\kappa}{1 + \mu s^2 / \kappa}, \quad \mu = 0.21951, \quad \kappa = 0.804
\]

- \(\kappa\) is determined from Lieb-Oxford bound (analytical evaluation)
 \(\rightarrow\) \(\kappa\) must be kept in any systems
- \(\mu\) is determined from RPA calculation of homogeneous electron gas
PBE-GGA Coulomb Exchange Functional

\[
E_{\text{GGA}}^{\text{Cx}} [\rho] = \int \varepsilon_{\text{LDA}}^{\text{Cx}} (\rho (r)) \ F(s) \ \rho (r) \ dr, \quad s = \frac{|\nabla \rho|}{2 (3\pi^2)^{1/3} \rho^{4/3}},
\]

\[
F(s) = 1 + \kappa - \frac{\kappa}{1 + \lambda \mu s^2 / \kappa}, \quad \mu = 0.21951, \quad \kappa = 0.804
\]

- \(\kappa \) is determined from Lieb-Oxford bound (analytical evaluation)
 \(\rightarrow \) \(\kappa \) must be kept in any systems

- \(\mu \) is determined from RPA calculation of homogeneous electron gas
 \(\rightarrow \) \(\mu \) in nuclei can be different from in original one
Self-Consistent Calculation

Setup for Self-consistent Skyrme Hartree-Fock Calculation

<table>
<thead>
<tr>
<th>Part</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclear Part</td>
<td>SAMi Functional</td>
</tr>
<tr>
<td></td>
<td>(However, choice of functional of nuclear part is not critical)</td>
</tr>
<tr>
<td>Coulomb Part</td>
<td>LDA exchange is replaced to PBE Functional (GGA)</td>
</tr>
<tr>
<td>Correlation Part</td>
<td>Coulomb correlation part is not considered</td>
</tr>
<tr>
<td>Pairing Correlation</td>
<td>Neglected</td>
</tr>
</tbody>
</table>

Calculation

| Code | Modified skyrme_rpa for GGA |
| **Box Size** | 0.1 fm × 150 |
• λ does not have an obvious isospin dependence

\[
F(s) = 1 + \kappa - \frac{\kappa}{1 + \lambda \mu s^2 / \kappa}
\]
• λ does not have an obvious isospin dependence
• $\lambda = 1.25$ will reproduce well in mid/heavy-mass region
• λ does not have an obvious isospin dependence
• $\lambda = 1.25$ will reproduce well in mid/heavy-mass region
• For whole nuclear chart, $\lambda = 1.25$ is the most suitable
• In light nuclei, $\lambda = 1.25$ has still a little error → shell effect?

\[
F(s) = 1 + \kappa - \frac{\kappa}{1 + \lambda \mu s^2 / \kappa}
\]
Short Conclusion

- GGA exchange enhanced from LDA
 12% (−80 keV) in 4He, 2.3% (−600 keV) in 208Pb → non-negligible
- “Modified” PBE-GGA Coulomb exchange functional with $\lambda = 1.25$
 reproduces the exact-Fock energy almost whole nuclear chart
- Numerical cost
 Exact-Fock $O(N^4)$
 LDA $O(N^3)$
 GGA Still $O(N^3)$
Short Conclusion

- GGA exchange enhanced from LDA
 12% (−80 keV) in 4He, 2.3% (−600 keV) in 208Pb → non-negligible
- “Modified” PBE-GGA Coulomb exchange functional with $\lambda = 1.25$
 reproduces the exact-Fock energy almost whole nuclear chart
- Numerical cost
 Exact-Fock $O(N^4)$
 LDA $O(N^3)$
 GGA Still $O(N^3)$
 → Modified PBE-GGA should be used instead of the LDA!
Table of Contents

1. Introduction
2. Coulomb Correlation Functional
3. Coulomb Exchange Functional
4. Conclusion and Perspectives
Recent Study of Coulomb Energy

- Studies which suggest **Coulomb repulsive is “strong”**
 - Skyrme HF without E_{Cx} reproduces the mass globally
 - Effective charge of Coulomb EDF in Skyrme HF should be $e^2 \left(1 + 0.45Z^{-2/3} \right)$ instead of e^2 in order to reproduce IMME
 - Coulomb correlation is $E_{Cc} < 0$

- Studies which suggest **Coulomb repulsive is “weak”**
 - Hartree term should be proportional to $Z(Z - 1)$ instead of Z^2
 - In the exact-Fock calculation, $E_{Cx} < 0$ is enhanced
 - In the GGA, $E_{Cx} < 0$ is enhanced
 - Finite-size effect decreases the Coulomb energy (On-going work)
Recent Study of Coulomb Energy

From fitting Coulomb repulsive is **stronger** than expected
From first-principle Coulomb repulsive is **weaker** than expected

Final Conclusion of Our Work

- GGA Coulomb exchange functionals in electron systems reproduces the exact-Fock energy, while numerical cost in GGA is almost the same as in LDA
- Coulomb correlation functionals in electron systems are not applicable to atomic nuclei directly
Recent Study of Coulomb Energy

From fitting Coulomb repulsive is **stronger** than expected

From first-principle Coulomb repulsive is **weaker** than expected

ISB term of nuclear force is stronger than expected??

Final Conclusion of Our Work

- GGA Coulomb exchange functionals in electron systems reproduces the exact-Fock energy, while numerical cost in GGA is almost the same as in LDA

- Coulomb correlation functionals in electron systems are not applicable to atomic nuclei directly
Recent Study of Coulomb Energy

- From fitting: Coulomb repulsive is **stronger** than expected.
- From first-principle: Coulomb repulsive is **weaker** than expected.

ISB term of nuclear force is stronger than expected??

How Coulomb correlation works?? (We just began to work for this topic)

Final Conclusion of Our Work

- **GGA Coulomb exchange functionals in electron systems** reproduces the exact-Fock energy, while **numerical cost in GGA is almost the same as in LDA**.

- **Coulomb correlation functionals in electron systems** are not applicable to atomic nuclei directly.
Recent Study of Coulomb Energy

- From fitting: Coulomb repulsive is **stronger** than expected
- From first-principle: Coulomb repulsive is **weaker** than expected

ISB term of nuclear force is stronger than expected??

How Coulomb correlation works?? (We just began to work for this topic)

Final Conclusion of Our Work

- GGA Coulomb exchange functionals in electron systems reproduces the exact-Fock energy, while numerical cost in GGA is almost the same as in LDA
- Coulomb correlation functionals in electron systems are not applicable to atomic nuclei directly

Grazie Mille!!