Isospin mixing at finite temperature in 80Zr

Simone Ceruti
Università degli Studi di Milano

SPES One-day Workshop
December 9-10 2013 Milano
Isospin Mixing

Isospin Mixing at $T > 0$ using GDR γ decay

Preliminary results from $T = 2.2$ MeV

Possible measurements at SPES

Conclusions
The Isospin Mixing in the ground state

- The presence of the Coulomb interaction inside the nucleus causes a mixing between states with different isospin.
- The main contribution to the mixing is between states with \(\Delta I = 1 \).
- In a perturbative way the mixing probability in the nuclear ground state is defined as:

\[
\alpha^2 = \frac{|\langle I = 1 | H_c | I = 0 \rangle|^2}{\Delta E^2}
\]
A CN in an excited state has a finite lifetime τ.

The lifetime can be so short to not allow a complete mixing.

At high excitation energy (and thus at short lifetime) the isospin symmetry is restored.

Lifetime implies a dynamical behavior of the isospin mixing phenomenon.
The Isospin Mixing at $T>0$

This **dynamical behavior** is described by the parameter α^2, defined as:

$$\alpha^2 \approx \frac{\Gamma}{\Gamma_{CN}} \approx \frac{\tau_{CN}}{\tau_{MIX}}$$

- **Coulomb spreading width**
- **Compound nucleus decay width**
- **To be obtained from measurements**
- **Known from statistical decay**

The Isospin Mixing at $T>0$

Theoretical model describes the relation between E^* and α^2:

$$\alpha^2_{J=0+1} \sim \frac{\Gamma_{\text{IAS}}}{\Gamma_{\text{CN}}(T) + \Gamma_{\text{IVM}}}$$

- Γ_{IAS} is the coulomb spreading width of the Isobaric Analog State. **FROM DATA**
- Γ_{IVM} is the width of the monopole resonance at the energy of the IAS **PARAMETER**
- Γ_{CN} is the decay width of the nucleus. **KNOWN FROM CN DECAY**

AIM OF THE PROJECT

Using this model with two or more measurements we can extrapolate the mixing at $T=0$, from the values at $T \neq 0$.

More measurements for the same $N=Z$ system are needed

Why ^{80}Zr?

- In ^{80}Zr the isospin mixing effects are not negligible
- The theoretical predictions depend on the nuclear interaction used

The Isospin Mixing at T>0

- In N=Z nuclei I=0
- In N=Z nuclei the electric dipole transitions in long-wavelength limit are forbidden in states with the same isospin.

\[I_{\text{fin}} = I_{\text{in}} \pm 1 \]

GDR at Temperature > 0

Selection rule:
E1 decays correspond to change of isospin

The mixing increases the \(\gamma \) decay yield

The observed E1 strength is a signature of the mixing

\[\alpha^2 = 2.50(\pm 1.0 - 0.7)\% \]
Experimental technique

We form a $I=0$ Compound Nucleus with a heavy ions fusion reaction

$$^{40}\text{Ca} + ^{40}\text{Ca} \rightarrow ^{80}\text{Zr}^*$$

From the data fit we can extract Γ^\downarrow quantity

We form a $I\neq 0$ Compound Nucleus with a heavy ions fusion reaction

$$^{37}\text{Cl} + ^{44}\text{Ca} \rightarrow ^{81}\text{Rb}^*$$

- We can use this reaction to determine the GDR’s parameters.
- The GDR’s parameters (centroid, width, strength) are expected to be the same for both reactions.
Experimental technique

HECTOR + GARFIELD Detectors

\[E_{\text{GDR}} = 16.2 \pm 0.17 \text{ MeV} \]
\[\Gamma_{\text{GDR}} = 10.8 \pm 0.2 \text{ MeV} \]
\[S_{\text{GDR}}(\%) = 90 \pm 3.5 \]

\[\Gamma_{\downarrow} = 10 \pm 3 \text{ keV} \]

A. Corsi et al. PRC 84, 041304(R) (2011)
Measurements and Analysis

AGATA – HECTOR$^+$ array @ LNL

4 AGATA Clusters (12 capsules)
6 LaBr$_3$:Ce (3.5” x 8”)
1 LaBr$_3$:Ce (3 x 3”)

With AGATA we measure the evaporation residues to tune statistical model.
AGATA – HECTOR+ array @ LNL

4 AGATA Clusters (12 capsules)
6 LaBr$_3$:Ce (3.5” x 8”)
1 LaBr$_3$:Ce (3 x 3”)

- With HECTOR+ we have a good time selection to reject eliminate neutron contribution and background
- Time resolution \approx 1.8 ns
- Good efficiency for high energy gamma rays

[Graphs showing time vs. counts for 37Cl + 44Ca and 40Ca + 40Ca, with a note indicating neutrons.]
Measurements and Analysis

Evaluation of the different angular momentum distributions for different triggers for 80Zr for statistical code

CN Cross Section: $\langle J \rangle = 26 \hbar$, st.dev = 9 \hbar

<table>
<thead>
<tr>
<th>M_γ</th>
<th>$\langle J \rangle (\hbar)$</th>
<th>St.dev(\hbar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>29.5</td>
<td>7.7</td>
</tr>
<tr>
<td>$1\text{AGATA} & 1\text{LaBr}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>32</td>
<td>7</td>
</tr>
<tr>
<td>$1\text{AGATA} & 2\text{LaBr}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>32</td>
<td>7</td>
</tr>
<tr>
<td>$2\text{AGATA} & 1\text{LaBr}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>34</td>
<td>6.8</td>
</tr>
<tr>
<td>$2\text{AGATA} & 2\text{LaBr}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Spin distribution is an input for the statistical model
- The mean values of the angular momentum distributions increase with the fold request
Measurements and Analysis

Comparison between experimental and simulated residue intensity in 80Zr decay

The statistical model reproduce well the reaction
Measurements and Analysis

$^{81}\text{Rb} - \text{HECTOR}^+$

$^{80}\text{Zr} - \text{HECTOR}^+$

$E_{\text{GDR}} = 16.4 \pm 0.2 \text{ MeV}$

$\Gamma_{\text{GDR}} = 7.0 \pm 0.4 \text{ MeV}$

$S_{\text{GDR}} (%) = 88 \pm 2$

Preliminary fit result $\rightarrow \Gamma_{\downarrow} = 12 \pm 3 \text{ keV}$
For the measurement of isospin mixing we need a combination of target and projectile with N=Z

With radioactive beams it could be possible to produce new hot nuclei, in order to do a systematic study of isospin mixing at different Z and different temperature

Possible beams: ^{34}Cl, ^{26}Al, ^{38}Kr, ^{44}Ti
Possible nuclei: ^{74}Rb, ^{66}As, ^{79}Y, ^{82}Mo

For this measurement we need:

- High beam intensity
- Large temperature window in the fusion
- Detectors with a good efficiency at high energy (LaBr_3)
- Detectors for the identification of residues
Conclusions and Perspectives

Conclusions:

- We studied Isospin mixing at $T > 0$ with GDR γ-decay
 - two dataset are available $T=2.2$ and 3 MeV on 80Zr
- Using theoretical help it is possible to extract the $T=0$ mixing from measured mixing at $T>0$
- Preliminary analysis shows for the two dataset:
 - consistent GDR parameters for 81Rb
 - the same value of Coulomb spreading width (T^\downarrow) within error bar

Future:

- Improve the fit technique in order to have small error bars in the parameters
- Compare the theoretical model with experimental α^2 data
- Extract an experimental value of isospin mixing at $T=0$ in 80Zr
- Find new nuclei to use this technique
Thank you for your attention