Study of shell structure and order-to-chaos transition in warm rotating nuclei with the radioactive beams of SPES

G. Benzoni, S. Leoni, A. Bracco, N. Blasi, F. Camera, F. C. L. Crespi, B. Million, O. Wieland, P. F. Bortignon, G. Colò, E. Vigezzi
Università degli Studi and INFN sez. Milano

D. Bazzacco, S. Lenzi, S. Lunardi, D. Montanari, C. Ur, et al.
INFN Padova and Università degli Studi di Padova

G. DeAngelis, D. Napoli, J. J. Valiente-Dobon, et al.
Laboratori Nazionali di Legnaro INFN

A. Maj, P. Bednarczyk, B. Fornal, M. Kmiecik, M. Ciemala et al.,
The Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
Warm rotating nuclei

- Fusion
- Neutron decay
- Rotation

E2 strength
- $|\alpha> = \sum \mu X_{\alpha}^{\mu} |\mu>
- Loss of selection rules

- Compound Nucleus
 - Chaos
 - $U \approx 8$ MeV

- Rotational Damping
 - Strongly interacting bands
 - $U = 1-5$ MeV

- Regular Bands
 - Mean field
 - $U < 1$ MeV

- WARM
- Very High Spin

- COLD
- Rotational bands
Collective rotations: de-excitation spectra

Analysis of quasi-continuum $\gamma - \gamma$ coincidence spectra with statistical and spectral shape analysis methods.

\[N_{\text{path}} = \frac{N_{\text{eve}}}{\mu_2} \times \mu_1^2 - 1 \]

Fluctuation Analysis Method.
Band-mixing Calculations => decay flow simulation

\[H(I) = H_{def} - \omega J_x + V_{SDI}^{residual} - \frac{J_z^2}{2\Gamma_{rot}} \]

\(n_b = \left[\sum S_{if}^2 \right]^{-1} \)

168Yb

onset of damping

\(n_b = 2 \)

\(\varepsilon = 0.25 \)

I = 20-61 \(\hbar \)

400 levels

U \leq 2.5 MeV

A. Bracco et al. PRL76(1996) 4484
Main Results from the Analysis of Quasi-Continuum Rotational Spectra

Evidence for rotational damping

- Sensitivity to the residual interaction
- Collectivity with thermal energy
- Mass dependence
- Configuration dependence
- Measurement of Compound and Rotational Damping Width
- Superdeformation at finite temperature

- i) how large the damping width Γ_{rot} is and how it changes with excitation energy and spin;
- ii) at which energy rotational damping sets in and how gradual is the process;
- iii) whether or not this process depends on the intrinsic nuclear configuration, therefore leading to different effects in connection with different quantum numbers of the shell-model states, such as the K-quantum number;
- iv) how high in excitation energy one has to go before a fully chaotic regime is reached.
Evidence for Rotational Damping
Importance of Residual Interaction

Band Mixing Calculations

\[H = H_{\text{def}} - \omega J_x + V_{\text{res}} \]

Nilsson Cranking SDI inter.

\[U_0 = 1 \text{ MeV} \]
\[\Gamma_{\text{rot}} = 200 \text{ keV} \]

B. Herskind et al., PRL68(1992)3008
Sensitivity to Residual Interaction
Type of Interaction and Interaction Strength

Type of Interaction
Rotational Damping originates from high-multiple terms of two-body residual interaction

Interaction Strength
\[\sqrt{\langle |V|^2 \rangle_{\text{SDI}}} = 20 \text{ keV} \]
\[\sqrt{\langle |V|^2 \rangle_{\text{EXP}}} = 14 \text{ keV} \]
from discrete spectroscopy

M. Matsuo et al., NPA617,1 (1997)
Collectivity with Thermal Energy Fractional Doppler Shift Analysis

\[\gamma - \gamma \text{ spectrum} \]

\[\langle E_\gamma \rangle = 800 \text{ keV} \]

\[(E_\gamma^1 - E_\gamma^2) \text{ keV} \]

\[\text{Forward} \]

\[\text{Backward} \]

\[E_\gamma \text{ (keV)} \]

\[1000 \quad 1500 \]

\[0.0 \quad 0.2 \quad 0.4 \quad 0.6 \quad 0.8 \quad 1.0 \]

\[F(\tau) \]

\[E_\gamma \text{ (keV)} \]

\[500 \quad 700 \quad 900 \quad 1100 \quad 1300 \quad 1500 \]

\[164\text{Yb} \]

\[Q_t = 7.6 \text{ eb} \]

\[Q_t = 6.6 \text{ eb} \]

\[Q_t = 5.5 \text{ eb} \]

\[\text{Same Collectivity} \]

\[Q_t = 5.5 \text{ eb} \]

\[B(E2) = 200 \text{ W.u.} \]

\[\text{yrast} \]

\[\text{discrete exc. bands} \]

\[\text{mixed exc. bands} \]

S. Frattini et al., PRL81(1998)2659
Configuration Dependence & Onset of Chaos
Persistence of selection Rules with Temperature:

Chaotic regime: $U \geq 2.5$ MeV

Smaller number of High-K states in the damping regime

Need for confirmation in other systems: egs. Hf nuclei

$^{136}\text{Te} + ^{48}\text{Ca} \rightarrow ^{180}\text{Hf} + 4n$

G. Benzoni et al., PLB 615 160-166 (2005)
Warm rotation in exotic systems

Stable: $^{48}\text{Ca}(\@ 215\text{MeV}) + ^{124}\text{Sn} \rightarrow ^{168}\text{Yb}(63\hbar) + 4n$

SPES: $^{132}\text{Sn}(\@ 560\text{MeV}) + ^{48}\text{Ca} \rightarrow ^{176}\text{Yb}(76\hbar) + 4n$

Stable beams: fission limits the maximum angular momentum of the nucleus

N-rich beams: fission barrier increases with N

population of larger angular momenta

Swiatecki-Myers

- RIB
- Stable

Spin and temperature dependence of Γ_{rot}

Stable: $^{48}\text{Ca}(\text{at } 215\text{MeV}) + ^{124}\text{Sn} \rightarrow ^{168}\text{Yb}(63\hbar) + 4n$

SPES: $^{132}\text{Sn}(\text{at } 560\text{MeV}) + ^{48}\text{Ca} \rightarrow ^{176}\text{Yb}(76\hbar) + 4n$

γ-flow

$E1/E2$
Rotational Damping: I and T dependence
Γ_{rot} and Γ_{μ} from γ-γ spectra

E2 strength

|α>

Γ_{rot}

Δω_{0}

Γ_{μ}

I-2

fine structure of rotational damping

Γ_{narrow} ≈ 2Γ_{μ}

Γ_{wide} ≈ √2Γ_{rot}

I = 40, 41 h
levels 11-100

S. Leoni et al., PRL93(2004)022501
F. Stephens et al., PRL88(2002)142501
M. Matsuo et al., PLB465(1999)1
Shell effects dependence

\[\Delta \omega = \sqrt{(\Delta \omega_0^N)^2 + (\Delta \omega_0^P)^2} \]

for \(U \leq 2 \text{ MeV} \)

\[\Gamma_{\text{rot}} = 2(2\Delta \omega_0) \]

\(\Gamma_{\text{rot}} \) depends on 2 contributions: \(P \) and \(N \). Accessing nuclei on an isotopic chain will help define the 2 contributions.

So far MASS dependence has been addressed

\[\Gamma_{\text{rot}} \propto I A^{-5/2} \epsilon^{-1} \]

\[U_0 \propto A^{-2/3} \]

comparative study

\[A=110 \quad 114\text{Te} \quad \epsilon \approx 0.25 \]

\[A=160 \quad 164\text{Yb} \quad \epsilon \approx 0.25 \]

168\text{Yb} \quad I=40\text{h}, U=2\text{MeV}

highly aligned orbits

no highly aligned orbits

neutron

So far MASS dependence has been addressed

\[\Gamma_{\text{rot}} \propto I A^{-5/2} \epsilon^{-1} \]

\[U_0 \propto A^{-2/3} \]

comparative study

\[A=110 \quad 114\text{Te} \quad \epsilon \approx 0.25 \]

\[A=160 \quad 164\text{Yb} \quad \epsilon \approx 0.25 \]

168\text{Yb} \quad I=40\text{h}, U=2\text{MeV}

highly aligned orbits

no highly aligned orbits

neutron
Rotational Damping: I and T dependence

γb isotopes

\[\Gamma_{\text{rot}} = 2(2\Delta \omega_0) \]
\[\Delta \omega_0 = \sqrt{(\Delta \omega_0^N)^2 + (\Delta \omega_0^P)^2} \]

Need for n-rich beams

\[^{132}\text{Sn} + ^{48}\text{Ca} \rightarrow ^{176}\text{Yb} + 4n \]
\[^{130}\text{Sn} + ^{48}\text{Ca} \rightarrow ^{174}\text{Yb} + 4n \]

Expected increase of \(\Gamma_{\text{rot}} \) (~25%) with N number, mainly driven by neutrons

M. Matsuo et al., PLB465(1999)1
Proposed reactions

\[\Gamma_{\text{rot}} \] dependence on T, I and N

- \(^{132}\text{Sn} + ^{48}\text{Ca} \rightarrow ^{176}\text{Yb} + 4n \)
- \(^{130}\text{Sn} + ^{48}\text{Ca} \rightarrow ^{174}\text{Yb} + 4n \)

Order-to-chaos transition

- \(^{136}\text{Te} + ^{48}\text{Ca} \rightarrow ^{180}\text{Hf} + 4n \)

Beam intensities \(\approx 10^8 \) pps

One order of magnitude less than presently available with stable beams,

- 1 pnA, i.e. \(\approx 10^9 \) pps.

\[E_{\text{beam}} \approx 5 \text{ MeV/u} \]

\[I \approx 70 \text{ h} \]

\[U \approx 2 \text{ MeV} \]
Experimental array

Need for a $4\pi \gamma$ array:

Ge Ball (AGATA/GALILEO) + LaBr$_3$ scintillators

High-efficiency array could compensate low beam intensities
Conclusions

- Fusion-evaporation reactions induced by n-rich beams of SPES:
 - Higher fission barrier
 - Chance to reach larger angular momenta and internal energies

- Study of warm rotating nuclei with n-rich beams of SPES:
 - Γ_{rot} dependence on Temperature/Spin
 - Γ_{rot} dependence on neutron number
 - Order-to-chaos transition

- Requirements: $E_{beam} \sim 5$ MeV/u

$^{168-176}$Yb chain

- $^{\text{BEAM} \sim 10^9 \text{ pps}}$

- $4\pi\gamma$ array: AGATA + LaBr$_3$
 - Improved efficiency compensate lower I$_{beam}$

Proposed reactions:

\begin{align*}
^{132}\text{Sn} + ^{48}\text{Ca} & \rightarrow ^{176}\text{Yb} + 4\text{n} \\
^{130}\text{Sn} + ^{48}\text{Ca} & \rightarrow ^{174}\text{Yb} + 4\text{n} \\
^{136}\text{Te} + ^{48}\text{Ca} & \rightarrow ^{180}\text{Hf} + 4\text{n}
\end{align*}

Feasible at 1st operation of SPES