Stellar weak interaction rates and shape coexistence for A~70 proton-rich nuclei within beyond-mean-field approach

A. PETROVICI

Horia Hulubei National Institute for Physics and Nuclear Engineering, Bucharest, Romania
Outline

- complex EXCITED VAMPIR beyond-mean-field model

- terrestrial and stellar weak interaction rates for A~70 proton-rich nuclei:
 - isospin-symmetry-breaking and shape-coexistence effects on superallowed Fermi β decay of the $Z=N+2$ isotopes 70Kr and 74Sr
 - Gamow-Teller β decay and shape-coexistence for
 - 70Kr and 74Sr
 - 68Se and 72Kr rp-process waiting points
A~70 proton-rich nuclei manifest exotic structure and dynamics generated by the interplay of

- shape coexistence and shape mixing
- competing $T=0$ and $T=1$ pairing correlations
- isospin-symmetry-breaking interactions

responsible for

drastic changes in structure with number of nucleons, spin, and excitation energy

Challenges for theory

- realistic effective Hamiltonians in adequate model spaces, beyond-mean-field methods
- unitary treatment of structure phenomena and β-decay properties

Goals:

- tests of fundamental symmetries and interactions
- reliable predictions on stellar weak interaction rates
 based on self-consistent description of experimentally accessible properties
complex VAMPIR model family – beyond-mean-field approaches

• the model space is defined by a finite dimensional set of spherical single particle states

• the effective many-body Hamiltonian is represented as a sum of one- and two-body terms

• the basic building blocks are Hartree-Fock-Bogoliubov (HFB) vacua

• the HFB transformations are essentially complex and allow for proton-neutron, parity and angular momentum mixing being restricted by time-reversal and axial symmetry ($T=1$ and $T=0$ neutron-proton pairing correlations included already at the mean-field level)

• the broken symmetries ($s=N, Z, I, p$) are restored by projection before variation

* The models allow to use rather large model spaces and realistic effective interactions
Beyond-mean-field variational procedure

complex Vampir

$$E^s[F^s_1] = \frac{\langle F^s_1 | \hat{H} \Theta^s_{00} | F^s_1 \rangle}{\langle F^s_1 | \Theta^s_{00} | F^s_1 \rangle}$$

$$|\psi(F^s_1); sM\rangle = \frac{\Theta^s_{M0} |F^s_1\rangle}{\sqrt{\langle F^s_1 | \Theta^s_{00} | F^s_1 \rangle}}$$

complex Excited Vampir

$$|\psi(F^s_i); sM\rangle = \Sigma_{j=1}^{i} |\phi(F^s_j)\rangle \alpha^i_j \quad \text{for} \quad i = 1, \ldots, n - 1$$

$$|\phi(F^s_i); sM\rangle = \Theta^s_{M0} |F^s_i\rangle$$

$$|\psi(F^s_n); sM\rangle = \Sigma_{j=1}^{n-1} |\phi(F^s_j)\rangle \alpha^n_j + |\phi(F^s_n)\rangle \alpha^n_n$$

$$(H - E^{(n)} N) f^n = 0$$

$$(f^{(n)})^+ N f^{(n)} = 1$$

$$|\Psi^{(n)}_\alpha; sM\rangle = \sum_{i=1}^{n} |\psi_i; sM\rangle f^{(n)}_{i\alpha}, \quad \alpha = 1, \ldots, n$$
$A \sim 70$ mass region

$^{40}\text{Ca} - \text{core}$

model space for both: protons and neutrons

\[1p_{1/2} \ 1p_{3/2} \ 0f_{5/2} \ 0f_{7/2} \ 1d_{5/2} \ 0g_{9/2} \]

(charge-symmetric basis + Coulomb contributions to the π-spe from the core)

\[1p_{1/2} \ 1p_{3/2} \ 0f_{5/2} \ 0f_{7/2} \ 2s_{1/2} \ 1d_{3/2} \ 1d_{5/2} \ 0g_{7/2} \ 0g_{9/2} \ 0h_{11/2} \ (\text{ext-model space}) \]

renormalized G-matrix (OBEP- \textbf{Bonn A/ CD})

- **pairing properties enhanced by short range Gaussians for:**

 \(T = 1 : \) \(pp \ (-35 \text{ MeV}), \ np \ (-20 \text{ MeV}), \ nn \ (-35 \text{ MeV}) \)

 \(T = 0, S = 0 \) and \(S = 1 \ (-35 \text{ MeV}) \)

- **onset of deformation influenced by monopole shifts:**

 \[<0g_{9/2} \ 0f; T=0 \ |G| \ 0g_{9/2} \ 0f; T=0> \ (0f_{5/2}, \ 0f_{7/2}) \]

 \[<1d_{5/2} \ 1p; T=0 \ |G| \ 1d_{5/2} \ 1p; T=0> \ (1p_{1/2}, \ 1p_{3/2}) \]

- **Coulomb interaction between valence protons added**
Self-consistent terrestrial and stellar weak interaction rates for \(A \approx 70 \) nuclei

Fermi transition probabilities

\[
B_{i\rightarrow f}(F) = \frac{1}{2J_i + 1} \frac{g_V^2}{4\pi} |M_F|^2
\]

\[
M_F \equiv (\xi_f J_f || \hat{1} || \xi_i J_i)
= \delta_{J_i J_f} \sum_{ab} M_F(ab)(\xi_f J_f || [c_a^\dagger \tilde{c}_b]_0 || \xi_i J_i)
\]

\[
M_F(ab) = (a||\hat{1}||b)
\]

Gamow-Teller transition probabilities

\[
B_{i\rightarrow f}(GT) = \frac{1}{2J_i + 1} \frac{g_A^2}{4\pi} |M_{GT}|^2
\]

\[
M_{GT} \equiv (\xi_f J_f || \hat{\sigma} || \xi_i J_i)
= \sum_{ab} M_{GT}(ab)(\xi_f J_f || [c_a^\dagger \tilde{c}_b]_1 || \xi_i J_i)
\]

\[
M_{GT}(ab) = 1/\sqrt{3}(a||\hat{\sigma}||b)
\]
Weak interaction rates and shape coexistence for the Z=N+2 isotopes 70Kr and 74Sr

Isospin-symmetry-breaking and shape-coexistence effects on superallowed Fermi β-decay

$A = 70 : \quad ^{36}$Kr$_{34} - ^{35}$Br$_{35} - ^{34}$Se$_{36}$

$A = 74 : \quad ^{38}$Sr$_{36} - ^{37}$Rb$_{37} - ^{36}$Kr$_{38}$

$B(\Gamma)(g.s.) = \frac{K}{2G^2_F(1 + \Delta_R^2)}$ \hspace{1cm} δc -- isospin-symmetry-breaking correction

Shape coexistence and deformation revealed by spectroscopic quadrupole moments

<table>
<thead>
<tr>
<th>$I(\pi)$</th>
<th>70Se</th>
<th>70Br</th>
<th>70Kr</th>
</tr>
</thead>
<tbody>
<tr>
<td>2^+_1</td>
<td>-7</td>
<td>-18</td>
<td>-25</td>
</tr>
<tr>
<td>2^+_2</td>
<td>4</td>
<td>16</td>
<td>18</td>
</tr>
<tr>
<td>4^+_1</td>
<td>-7</td>
<td>-30</td>
<td>-42</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$I(\pi)$</th>
<th>74Kr</th>
<th>Exp</th>
<th>74Rb</th>
<th>74Sr</th>
</tr>
</thead>
<tbody>
<tr>
<td>2^+_1</td>
<td>-54</td>
<td>-53(24)</td>
<td>-57</td>
<td>-50</td>
</tr>
<tr>
<td>2^+_2</td>
<td>49</td>
<td>24(21)</td>
<td>53</td>
<td>48</td>
</tr>
<tr>
<td>4^+_1</td>
<td>-74</td>
<td>-80(40)</td>
<td>-77</td>
<td>-70</td>
</tr>
</tbody>
</table>

70Kr \hspace{1cm} $Q_{EC} = 10.480$ MeV

$0^+_{gs} \rightarrow 0^+$

Nonanalog branches:
$0^+_IV, 0^+_V \leq 0.4\%$

$2^+_\text{yrast} \rightarrow 2^+$

Nonanalog branches:
$2^+_IV \leq 1.3\%$
$^{74}\text{Sr} \quad Q_{EC} = 11.090 \text{ MeV}$

$1\% \leq \delta_c \leq 3\%$ \hspace{1cm} Nonanalog branches:

$0^+_{II} , 0^+_{VI} \leq 0.8\%$

Nonanalog branches:

$1\% \leq \delta_c \leq 3.6\%$ \hspace{1cm} $2^+_{II} \leq 1.3\% , 2^+_{IV} \leq 0.8\%$

Relevant for astrophysical scenarios on rp-process path in X-ray burst environment: 0^+_exc and 2$^+_{\text{sec}}$ decay
Gamow-Teller β decay and shape coexistence for 70Kr and 74Sr

Independent chains of variational calculations in parent and daughter nuclei

Large variety of deformations in daughter states revealed by spectroscopic quadrupole moments
Gamow-Teller strength distributions for the decay of low-lying 0\(^+\) and 2\(^+\) states in \(^{70}\)Kr

Specific shape mixing for each parent state influences the strength distributions.

Contributions from \(p^{\nu(\pi)}_{1/2}p^{\pi}_{3/2}\), \(p^{\nu}_{3/2}p^{\pi}_{3/2}\), \(f^{\nu}_{5/2}f^{\pi}_{5/2}\), \(f^{\nu(\pi)}_{5/2}f^{\pi(\nu)}_{7/2}\), \(g^{\nu}_{9/2}g^{\pi}_{9/2}\) matrix elements (coherent/cancelling effect)
Gamow-Teller strength distributions for the decay of low-lying 0^+ and 2^+ states in ^{74}Sr
Terrestrial half-lives

\[
\frac{1}{T_{1/2}} = \frac{1}{D} \sum_{0 \leq E_f < Q_{EC}} f(Z, E_f)[B_{if}(GT) + B_{if}(F)]
\]

\(T_{1/2}^{\exp} = 52(17)\) ms

\(T_{1/2}^{GT} = 258\) ms \quad \(T_{1/2}^{F} = 63\) ms

\(T_{1/2}^{\text{EXVAM}} = 51\) ms

Terrestrial half-lives

\(T_{1/2}^{\exp} = 27(8)\) ms

\(T_{1/2}^{GT} = 137\) ms \quad \(T_{1/2}^{F} = 48\) ms

\(T_{1/2}^{\text{EXVAM}} = 36\) ms
Weak interaction rates in X-ray burst astrophysical environment

In the X-ray burst stellar environment at densities ($\sim 10^6 \text{ mol/cm}^3$) and temperatures ($\sim 10^9 \text{K}$) typical for the rp-process the contribution of thermally populated low-lying 0^+ and 2^+ states may be relevant.

$$\lambda^\alpha = \frac{\ln 2}{K} \sum_i \frac{(2J_i + 1)e^{-E_i/(kT)}}{G(Z, A, T)} \sum_j B_{ij} \phi_{ij}^\alpha$$

$$G(Z, A, T) = \sum_i (2J_i + 1) \exp(-E_i/(kT))$$

$$B_{ij} = B_{ij}(F') + B_{ij}(GT)$$

$$\phi^{ec}_{ij} = \int_{w_1}^{\infty} wp(Q_{ij} + w)^2 F(Z, w) S_e(w)(1 - S_\nu(Q_{ij} + w)) dw$$

$$\phi^{\beta^+}_{ij} = \int_{1}^{Q_{ij}} wp(Q_{ij} - w)^2 F(-Z + 1, w)(1 - S_p(w))(1 - S_\nu(Q_{ij} - w)) dw$$
Stellar rates for 70Kr : β^+ - decay

0^+_gs and 2^+_yrast - parent states
β^+ and electron capture rates for ^{70}Kr

\[\lambda \left(\text{s}^{-1} \right) \]

\[\rho Y_e = 10^6 \]

\[\rho Y_e = 10^6 \]

\[\rho Y_e = 10^7 \]

\[t_{1/2} \text{(s)} \]
Stellar rates for 74Sr : β^+ - decay

$E_{0^+_{\text{exc}}}^{\text{th}} = 0.564$ MeV \hspace{1cm} $E_{2^+_{\text{yrast}}}^{\text{th}} = 0.471$ MeV \hspace{1cm} $E_{2^+_{\text{sec}}}^{\text{th}} = 0.823$ MeV
\[\lambda \left(\text{s}^{-1} \right) \]

\(\beta^+ \) and electron capture rates for \(^{74}\text{Sr}\)
Self-consistent terrestrial and stellar weak interaction rates for 68Se and 72Kr waiting points

Shape coexistence and mixing in both parent and daughter nuclei

68Se: $E_{2+}^{yrast} = 0.854$ MeV $Q^{sp}_{2+}^{yrast} = 3.5$ efm2(A); -7.1 efm2(CD) $B(E2;2^+\rightarrow 0^+) \sim 500$ e2fm4 (Exp.: 430(60) e2fm4)

68As

$T_{1/2}^{exp} = 35.5(7)$ ms $T_{1/2}^{EXVAM} = 48.8$ ms (BonnA) $T_{1/2}^{EXVAM} = 33.5$ ms (BonnCD)
72Kr: \[E_{0^+_{gs}} = 0.0 \text{ MeV} \ [60/40(\%) - p/o mixing] \]

$E_{0^+_{exc}} = 0.671 \text{ MeV} \ [38/62(\%) - p/o mixing]$

$E_{2^+_{yrast}} = 0.710 \text{ MeV} \ [41/59(\%) - p/o mixing] \text{ (BonnA-ext-space)}$

Contributions:
- $p^{v(\pi)}\frac{3}{2} p^{\pi(\nu)}\frac{3}{2}$, $p^{v(\pi)}\frac{3}{2} P^{\pi(\nu)}\frac{3}{2}$, $f^{v(\pi)}\frac{5}{2} f^{\pi(\nu)}\frac{5}{2}$, $f^{v(\pi)}\frac{5}{2} f^{\pi(\nu)}\frac{7}{2}$, $g^{v(\pi)}\frac{9}{2} g^{\pi(\nu)}\frac{9}{2}$ matrix elements (decay to 1$^+$ states)
- $p^{v(\pi)}\frac{3}{2} p^{\pi(\nu)}\frac{1}{2}$, $p^{v(\pi)}\frac{3}{2} P^{\pi(\nu)}\frac{3}{2}$, $f^{v(\pi)}\frac{5}{2} f^{\pi(\nu)}\frac{7}{2}$ matrix elements (decay to 3$^+$ states)

72Br

$E_{0^+_{gs}} = 0.0 \text{ MeV} \ [60/40(\%) - p/o mixing]$

$E_{0^+_{exc}} = 0.671 \text{ MeV} \ [38/62(\%) - p/o mixing]$

$E_{2^+_{yrast}} = 0.710 \text{ MeV} \ [41/59(\%) - p/o mixing] \text{ (BonnA-ext-space)}$

$T_{1/2}^{\text{exp}} = 17.1(2) \text{ ms}$

$T_{1/2}^{\text{EXVAM}} = 20.8 \text{ ms (BonnA)}$

$T_{1/2}^{\text{EXVAM}} = 20.7 \text{ ms (BonnA-ext-space)}$

$T_{1/2}^{\text{EXVAM}} = 18.9 \text{ ms (BonnCD)}$
Significant continuum electron capture contribution
Stellar rates for 72Kr: β^+ and continuum electron capture

Significant continuum electron capture contribution
Summary and outlook

Complex EXCITED VAMPIR model self-consistently describes shape-coexistence effects on

- superallowed Fermi β-decay of the $Z=N+2$ isotopes 70Kr and 74Sr
- terrestrial and stellar weak interaction rates for $A\sim70$ proton-rich nuclei

Currently we are extending the investigations to $N=Z$ nuclei up to 100Sn